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Abstract In this paper we consider a basic scheduling problem called
the busy time scheduling problem - given n jobs, with release times rj ,
deadlines dj and processing times pj , and m machines, where each ma-
chine can run up to g jobs concurrently, our goal is to find a schedule to
minimize the sum of the “on” times for the machines. We develop the
first correct constant factor online competitive algorithm for the case
when g is unbounded, and give a O(logP ) approximation for general g,
where P is the ratio of maximum to minimum processing time. When
g is bounded, all prior busy time approximation algorithms use an un-
bounded number of machines; note it is NP-hard just to test feasibility
on fixed m machines. For this problem we give both offline and online
(requiring “lookahead”) algorithms, which are O(1) competitive in busy
time and O(logP ) competitive in number of machines used.

1 Introduction

Scheduling jobs on multiple parallel machines has received extensive attention
in the computer science and operations research communities for decades (see
reference work [3]). For the most part, these studies have focused primarily
on job-related metrics such as minimum makespan, total completion time, flow
time, tardiness and maximum throughput. Our work is part of a line of recent
results working towards a different goal: energy efficiency, in particular aiming
to minimize the total time that a machine must be turned on, its busy time
[4,14,9,13,17,5]. Equivalently, we seek to maximize the average load of machines
while they are powered on, assuming we are free to turn machines off when they
are idle. Note in this context we are concerned with multi-processing machines,
as for machines which process only one job at a time the load is either 0 or
1 always. This measure has been studied in an effort to understand energy-
related problems in cloud computing contexts; see e.g. [13,5,4] . The busy time
metric also has connections to several key problems in optical network design,
for example in minimizing the fiber costs of Optical Add Drop Multiplexers
(OADMs) [9], and the application of busy time models to optical network design
has been extensively outlined in the literature [9,10,11,20,1].
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Formally the problem is defined as follows: we are given a set of n jobs, and
job j has a release time of rj , a deadline dj and a processing time of pj (it is
assumed rj + pj ≤ dj) and a collection of m multiprocessor machines with g
processors each. The significance of processors sharing a machine is that they
share busy time: the machine is on if a single processor on the machine is active.
Each job j is assigned to the time window [sj , sj +pj) on some machine mj . The
assignment must satisfy the following constraints:

1. Start times respect job release times and deadlines, i.e., [sj , sj+pj) ⊆ [rj , dj).
2. At most g jobs are running at any time on any given machine. Formally, at

any time t and on any machine m, |{j|t ∈ [sj , sj + pj),mj = m}| ≤ g.

The busy time of a machine is the duration for which the machine is pro-
cessing any non-zero number of jobs. The objective is to minimize the total sum
of busy times of all the machines. Formally, the objective function is

∞∑
i=0

µ

 ⋃
j:mj=i

[sj , sj + pj)


where µ measures the geometric length of a union of disjoint half intervals by
summing their individual lengths; e.g. µ([1, 2)∪[3, 4)∪[3, 5)) = 3 i.e. µ is Lebesgue
measure. Note that this objective is constant if g = 1.

All previous algorithms (described below) for busy time are forced to make
the assumption that m = ∞, because the number of machines required by the
schedules they generate can be as large as Ω(n), i.e. worst-possible. Our primary
interest in this paper is in improving on this front. Thus our primary interest
will really be in the simultaneous optimization problem of generating schedules
whose performance is bounded in two objectives simultaneously: both the busy
time and the number of machines required by the schedule. The best known
approximation algorithms for each of these objectives separately is 3 [5] and
O(

√
log n/ log log n) [6]. We conjecture that there exist schedules which achieve

a O(1) approximation in both objectives. However, as it stands the O(1) machine
minimization problem by itself remains a major open problem in combinatorial
optimization, so such a result is out of reach for now. The main result of our paper
will show that we can at least construct such a schedule under the assumption
that logP is bounded by a constant, where P = maxi,j pj/pi.

1.1 Related Work

Winkler and Zhang [20] first studied the interval job case of busy time schedul-
ing, i.e. when pj = dj − rj , and showed that even the special case when g = 2
is NP-hard. Their work was motivated by a problem in optical communication
and assigning routing requests to wavelengths. Assuming that the number of
machines available is unbounded, Alicherry and Bhatia [1], and independently
Kumar and Rudra [15], developed approximation algorithms with an approx-
imation factor of 2 for the case of interval jobs. Being unaware of prior work
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on this problem, subsequently, Flammini et al [9] developed a very simple 4
approximation via a greedy algorithm for the interval job case.

The first constant factor approximation for the general problem, albeit on
an unbounded number of machines, was was given by Khandekar et al [13].
They first design a dynamic programming based algorithm for the case when
g = ∞. This schedule is then used to fix the starting times of the jobs, and
the resulting instance of interval jobs is scheduled by the greedy algorithm of
Flammini et al [9]. Despite the “restriction” mapping, the approximation factor
of 4 is unchanged. Since better approximation algorithms for the interval job
case were available, it is natural to attempt to use those instead. Sadly, the
restriction mapping can actually increase the cost of an optimal solution by a
factor of 2, and so even if we use these algorithms we do not get a better bound
than 4 (see [5] for a tight example). Chang et al [5] developed a 3-approximation
algorithm by giving a new interval packing algorithm. We conjecture that the
correct answer for this is 2, matching the interval job case.

Unfortunately, the number of machines used by all of these algorithms may
be as large as Ω(n), even in the case when all jobs are equal length and released
at time rj = 0. This is because the g =∞ reduction chooses start times oblivious
to the true value of g. One may hope to resolve this problem from the other dir-
ection, by adapting an algorithm for minimizing the number of machines used.
It is not difficult to get a O(log n) approximation algorithm for this problem via
randomized LP rounding. The best known result is a O(

√
log n/ log log n) ap-

proximation algorithm by Chuzhoy et al [6] which uses a sophisticated recursive
LP relaxation to the problem. Unfortunately, it appears to us quite difficult to
adapt these LP rounding methods to account for the cost of the nonlinear busy
time objective.

When g < ∞, very strong lower bounds for online minimization of busy
time were given by Shalom et al [18]. They show that when g < ∞, no online
algorithm can be better than g competitive algorithm against an online adaptive
adversary. It should be noted that their general online model is harder than the
one we consider; they have no notion of time, so in the online scenario they
envision the algorithm must be able to deal with jobs arriving in arbitrary order.
However, their proof of the lower bound does not need this additional power: it
releases jobs in left-to-right order.

Some recent work [8,12] claims a 2-competitive online algorithm when g =∞,
but it is incorrect; see Fig. 1.

1.2 Our Contributions

We divide the results into sections depending on the flexibility the algorithm has
with m, the number of machines. We begin with the “classic” busy time model,
where m =∞.

– Our first result is an online 5-competitive algorithm for the busytime prob-
lem when machine capacity is unbounded g = ∞. In addition, we show
that against an adaptive online adversary there is no online algorithm with
competitive ratio less than φ.
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Figure 1: Counter-example to online algorithm of [8]. The optimal solution delays
all the flexible unit jobs to the end and gets a busy time cost of 1 + gδ rather
than g. Setting δ = 1

g gives the gap. The figure shows the schedule produced by
the online algorithm with a cost of g.

– The previous result is extended to the general busy time problem with g <
∞, and we get a competitive ratio of O(logP ). No online algorithm for this
problem was previously known. In the online setting with lookahead of 2pmax
we can give a 12-competitive algorithm.

We then present our main results, concerned with simultaneous optimization of
busytime and number of machines used:

– We present a constant-factor approximation algorithm for the busy time
problem with fixed number of machines m, given the assumption of identical
length jobs pj = p.

– We give the first approximation algorithm for busy time scheduling with
a non-trivial bound on the number of machines used. More precisely, for
the simultaneous optimization problem we give a schedule which is 3 + ε-
competitive on busy time and O( logP

log(1+ε) ) competitive on machine usage for
ε < 1.

– We give an online algorithm with O(pmax) lookahead in time, which remains
O(1)-competitive for busy time and O(logP ) competitive on machine usage.

– We also give tradeoff lower bounds which show the limits on the simultaneous
optimizability of these objectives; if we optimize solely for one objective (e.g.
machine usage), we may lose a factor of Ω(g) in the other (e.g. busy time).

1.3 Preliminaries

We recall the following fundamental scheduling lemma. The interval graph of
a collection of half-intervals {[αi, βi)}ni=1 is the graph with vertices the half-
intervals, and an edge between two half-intervals I1 and I2 iff I1 ∩ I2 6= ∅. The
interval graph is perfect, i.e.:

Proposition 1 Given a collection of half-open intervals {[αi, βi)}ni=1 there ex-
ists a k-coloring of the corresponding interval graph iff for all t ∈ R,

|{i : [αi, βi) 3 t}| ≤ k. (1)

Proposition 2 The following are lower bounds on the optimum busy time:
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1. The optimal busy time for the same input instance with g =∞.
2. The load bound (1/g)

∑n
j=1 pj.

We say a job is available at time t if rj ≤ t. It is often useful to refer to the latest
start time uj = dj − p of a job. An interval job is one with no choice in start
time, i.e. j is an interval job when dj − rj = pj . We define an algorithm to be a
(r1, r2)-approximation if it generates a schedule using at most r1mopt machines
and r2busyOPT busy time, where mopt is the smallest number of machines for
which a feasible schedule exists, and busyOPT (or just OPT) is the minimum
busy time on an unbounded number of machines.

2 Online Busy Time Scheduling with an Unbounded
Capacity

2.1 The g = ∞ case, Upper Bound

We give a 5-competitive deterministic online algorithm for busy time scheduling
when g = ∞. (We will also show this analysis is tight.) In this setting we may
assign all jobs to a single machine so we assume w.l.o.g. m = 1. Informally,
the algorithm is quite simple: everytime we hit a latest starting time uj of an
unscheduled job j, we activate the machine from time uj to time uj + 2pj and
run all the jobs that fit in this window. To analyze this, we can pick an arbitrary
optimal schedule, decompose its busy time into connected components, and then
bound the cost of our schedule by charging the cost of running jobs to the
connected components containing them.

In this section we will let T denote the active time of our machine; all jobs
are processed during this active time, i.e.

⋃
j [sj , sj + pj) ⊂ T . We also maintain

a set P of primary jobs but this is only for the purposes of the analysis.
Algorithm Doubler:

1. Let P = ∅. Let T = ∅.
2. For t = 0 to dmax:

(a) Let U be the set of unscheduled, available jobs.
(b) Run every unscheduled job j s.t. [t, t+ pj) ⊂ T ; j is now removed from

U .
(c) If t = uj for some j ∈ U , then pick such a j with pj maximal and set

T = T ∪ [t, t+ 2pj) (i.e. activate the machine from time t to t+ 2pj). Let
P = P ∪ {j}.

(d) Once again, run every unscheduled job j s.t. [t, t+pj) ⊂ T ; j is removed
from U .

Suppose the algorithm fails to schedule a job j. Then at time uj the job was
available but was not scheduled; impossible because steps 2(c) ensures that
T ⊃ [uj , uj + pj) and so step 2(d) would necessarily schedule it. Thus the al-
gorithm schedules all jobs and, because we may trivially verify it respects rj , dj
constraints, produces a valid schedule. Henceforth sj refers to the start times
chosen by algorithm Doubler; the following proposition is immediate.
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Proposition 3 Here T and P are as above upon completion of the algorithm.
For every j ∈ P , sj = uj; also T =

⋃
j∈P [sj , sj + 2pj).

Theorem 1. Algorithm Doubler is 5-competitive.

Proof. Fix an input instance (rj , dj , pj) and an optimal offline schedule OPT
with start times s∗j . Let T ∗ =

⋃
j [s
∗
j , s
∗
j + pj) so µ(T ∗) is the busy time cost of

OPT . Let P be the set of primary jobs. Let P1 ⊂ P consist of those jobs j in P
with [sj , sj + 2pj) ⊂ T ∗ and P2 = P \ P1. By the Proposition,

µ(T ) = µ

⋃
j∈P

[sj , sj + 2pj)


≤ µ

 ⋃
j∈P1

[sj , sj + 2pj)

 + µ

 ⋃
j∈P2

[sj , sj + 2pj)


≤ µ(T ∗) +

∑
j∈P2

2pj .

(2)

It remains to bound the cost incurred by jobs in P2. Decompose T ∗ into connec-
ted components {Ci}ki=1 so T ∗ = C1∪· · ·∪Ck. The endpoints of Ci are inf Ci and
sup Ci. Let J(Ci) be the set of jobs j with [s∗j , s

∗
j + pj) ⊂ Ci. OPT schedules all

jobs so
⋃
i J(Ci) is the set of all jobs, thus

∑
j∈P2

2pj =
∑k
i=1

∑
j∈P2∩J(Ci) 2pj .

We now claim that ∑
j∈P2∩J(Ci)

pj ≤ 2µ(Ci). (3)

To show the claim, first we index so {eij}
k′i
j=1 = P2∩J(Ci), where k′i = |P2∩J(Ci)|,

and (s(eij))
k′i
j=1 is a monotonically increasing sequence.

Observation: reij ≤ s(e
i
1) for all j. Suppose for contradiction that reij > s(ei1)

for some j. We know [s∗(eij), s
∗(eij)+peij ) ⊂ C

i, hence reij +peij ≤ sup Ci. Because

[s(ei1), s(ei1) + 2p1) 6⊂ Ci we know that s(ei1) + 2p1 ≥ sup Ci ≥ reij + peij . Thus

[reij , reij + peij ] ⊂ [s(ei1), s(ei1) + 2p1) ⊂ T . We see then that at time reij , step 2

(b) the algorithm must have scheduled job eij . Thus eij /∈ P ⊃ P2 ∩ J(Ci), which

contradicts the definition of eij . By contradiction reij ≤ s(e
i
1) for all j.

Now it follows that peij > 2peij−1
(for j ≥ 2): suppose otherwise, then because

we know eij was available at step 2 (c) at t = s(eij−1) ≥ s(ei1) ≥ reij , job eij
must have been scheduled at t with eij−1 and cannot have been added to P . By

contradiction, peij > 2peij−1
hence by induction pei

k′
i

> 2k
′
i−jpeij . Now (3) follows:

k′i∑
j=1

peij ≤
k′i∑
j=1

2j−k
′
ipei

k′
i

< pei
k′
i

∞∑
j′=0

2−j
′

= 2pei
k′
i

≤ 2µ(Ci).
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Thus
∑
j∈P2

2pj ≤
∑k
i=1 4µ(Ci) = 4µ(T ∗). Combining this with (2) proves the

theorem.

Obviously we could have defined the above algorithm replacing 2 with any α > 1,
however α = 2 minimizes α+

∑∞
i=0 α

−i and is thus optimal.
This analysis is tight. Fix N > 0 and let ε = 1/N . Consider an instance where

we release 2NN rigid jobs of length ε with availabity constraints [0, ε), [ε, 2ε), . . . , [(2NN−
1)ε, 2N ), and also at the beginning of time release flexible jobs of length 1+ε, 2+
(2 + ε)1ε, 4 + (2 + ε)2ε, . . . , 2N + (2 + ε)N ε with deadlines 2N + (1 + ε), 2N + 2(1 +
ε)+2(2+(2+ ε)1ε), and so on so that each latest start time is twice the previous
processing time plus the previous latest starting time. For ε sufficiently small,
every job will become primary and hence, taking ε → 0 the machine will be
activated for total time 2N + 2(2N + 2N ) = 5 ∗ 2N whereas, by starting all of the
flexible jobs at time 0 we would need only 2N busy time.

2.2 g = ∞, Online Lower Bounds

Proposition 4 No online algorithm (without lookahead) against an online ad-

aptive adversary has competitive ratio better than ϕ = 1+
√
5

2 ≈ 1.618.

Proof. Let 0 < α < 1 be a constant to be optimized later. Fix 1 > ε > 0 such
that α = εk where k ∈ Z. Here is the strategy for the adversary:

1. Release job A of length 1 available in [0, 3).
2. Until job A is started, at each t = nε for n < k ∈ Z release a single job of

length ε available in [t, t+ ε). (The ε jobs are interval jobs.)
3. If job A was started at t = nε, release a final job of length 1 available in

[2, 3).
4. Otherwise if job A is still not started at time (k− 1)ε, release no more jobs.

In the case corresponding to step (3), the online schedule has busy time nε+1+1
whereas the optimal offline schedule, which runs job A at time 2, has busy time
(n+ 1)ε+ 1. The ratio is thus nε+2

(n+1)ε+1 ≥ α−ε+2
α+1 because f(x) = x−ε+2

x+1 is mono-

tonically decreasing for x > 0. In the case corresponding to step (4), the online
schedule has busy time at least (k−1)ε+1 = α−ε+1 whereas the offline schedule

has busy time 1. Thus the competitive ratio is at least min
{
α−ε−2
α+1 , α− ε+ 1

}
and we may take the limit as ε→ 0. The positive solution to α−2

α+1 = α+ 1 is at

α =
√
5−1
2 , and thus we get a lower bound of ϕ = 1+

√
5

2 .

A similar proof also gives a weaker lower bound when the algorithm is granted
lookahead of O(pmax). Let 0 < β < 1. Release job A with a very large availability
span, and simultaneously release an interval job of length β, i.e. a job with rj =
0, pj = β, dj = β. Without loss of generality the online algorithm either schedules
job A at time 0 or chooses not to schedule job A until after time β. In the former
case, release a job of length 1 at the very end of job A’s availability window; in
the latter case, release no more jobs. The lower bound on the competitive ratio
now min{ 1+β1 , 2

1+β }, optimized at β =
√

2− 1, giving a ratio of
√

2.
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Proposition 5 An algorithm with lookahead a function of pmax has competitive
ratio at least

√
2 ≈ 1.414.

2.3 General Case, g < ∞

Combining with the bucketing algorithm given by Shalom et al [18] this gives
a O(log pmax

pmin
)-competitive online algorithm for busy time scheduling. More pre-

cisely, because the cost of their algorithm is bounded by 4 times the weight of the
input jobs, and 1 times the g =∞ lower bound, the approximation is 9 log pmax

pmin
.

Running Algorithm Doubler offline and combining with the 3-approximation
of Chang et al [5] gives a fast 7-approximation to the optimal busy time schedule.
This is because the Greedy Tracking algorithm [5] takes as input a g =∞ sched-
ule using busytime T and outputs a schedule with cost at most T + 2w(J)/g ≤
T + 2OPT where w(J) denotes the total processing time of all jobs. Since
T ≤ 5OPT using our algorithm, the cost is bounded by 7OPT .

If we are willing to grant the online algorithm a lookahead of 2pmax then we
can get a constant factor online algorithm. We use our g =∞ online algorithm to
determine the time placement of jobs; this algorithm requires no lookahead so we
now know the start time of jobs 2pmax ahead of the current time. We now run the
offline machine-assignment algorithm in windows of the form [kpmax, (k+2)pmax)
for k ∈ N. We can bound the cost of even k by 5OPT +2w(J0)/g where w(J0) is
the total processing time of jobs run in windows with even k; adding the matching
term for odd k shows that this gives a fast 2 ∗ 5 + 2 = 12 approximation.

3 Offline Algorithm for Equal length jobs, Bounded
Number of Machines

Although it is impossible in the general case (see Lower Bounds, Section 6),
in the case of pj = p we are able to compute a schedule which is (1, O(1))-
approximate, i.e. with the optimal number of machines and O(1) busy time vs.
the busy time optimum. A lower bound shows that a (O(1), 1)-approximation is
impossible to achieve, even in this scenario. Our algorithm is two-step: it starts
with a feasible schedule, and then uses a “pushing scanline” to push jobs together
and reduce the busytime cost. For space reasons the analysis has been moved to
the appendix; below is the algorithm.

Algorithm Compact

1. Compute a feasible schedule S with the minimum number of machines by
binary search (0 ≤ mopt ≤ n), using a feasibility algorithm for the prob-
lem with mg identical machines, each with one processor. The best known
algorithm is the O(n2) feasability algorithm of [16].

2. Ensure that S is left-shifted. Let s0j denote the start time of job j in S, and

let sj := s0j . Let K := ∅ and P := ∅.
3. For t from rmin to dmax: (main loop)

(a) For every unscheduled job j, let sj := max{s0j , t}. Let U be the set of
unscheduled jobs.



Busy-Time Scheduling on a Bounded Number of Machines 9

(b) If |{j ∈ U : sj ∈ [t, t + 2p]}| ≥ mg, run each job j in this set at time
sj . Let K := K ∪ {[t, t + 3p)}. We say these jobs were run in a cluster.
Return to the main loop at t := t+ 2p.

(c) Otherwise if t = uj for some unscheduled job j, run each job in the set
{j ∈ U : sj ∈ [t, t + p]} at its start time sj . Return to the main loop at
t := t+ p. Let P := P ∪ {j}.

In step 3 it is necessary to consider only t ∈ {uj , sj − 2p}, so we can run this
step in linearithmic time.

4 Offline Algorithm for Bounded Number of Machines

In this section we will use the fact that scheduling jobs on a minimum number of
machines with integer release times and deadlines and with p = pj = 1 is trivial
offline. For a fixed m, it is well-known that an EDF (earliest-deadline first)
schedule, i.e. one given by running at each time up to m of the jobs with earliest
deadlines, gives a feasible schedule iff the input instance is feasible. Computing
the minimum m can be done by binary search in log n steps.

We would like to describe some intuition before launching into the formal
analysis. As before, we use something like a “pushing scanline” approach, start-
ing from a left-shifted schedule and starting a group of jobs whenever a large
number have been pushed together. To make this approach have bounded busy
time usage, we need to bucket jobs by similar lengths and use the approach on
a per-bucket basis, but this alone cannot attain our desired performance ratio,
because we may need, for busy time purposes, to group some long jobs with some
short jobs. Therefore, in each bucket, when a job does not nicely group together
with other jobs of the same length, we temporarily drop it. A second “clean-up
pass” (step 3 below) runs the remaining jobs using an algorithm which has good
busy-time performance but a priori unbounded machine usage. By arguing that
we drop few jobs with overlapping availability times from each bucket, it is then
possible to bound the machine usage (see proof of Theorem 4).

We now present a (O(log pmax/pmin), O(1))-approximation algorithm for the
general problem. Fix a constant α > 1 to be optimized later.

1. Bucket jobs by processing time increasing exponentially by α, so the buckets
contain jobs of processing time in the intervals [pmin, αpmin), [αpmin, α

2pmin), . . . ,

[αq−1pmin, α
qpmin] where q =

⌈
logα

pmax
pmin

⌉
.

2. For each bucket Bi
(a) Let p be the supremum of the processing times of jobs in this bucket.

We round job availability constraints down to multiples of p, so r′j =
pbrj/pc, u′j = pbuj/pc, and p′j = p. This is a unit job scheduling problem
after we rescale by a factor of p.

(b) We generate a left-shifted feasible schedule (referred to as the initial
schedule) for the rounded (r′j , d

′
j , p
′
j) instance using the minimum number

of machines m. Let s0j be the start time of job j in this schedule.
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(c) Execute Algorithm RunHeavy.
(d) Let U ′i denote the set of jobs unscheduled in Bi after running Algorithm

RunHeavy.

3. Now let U ′′ be the union of the U ′i for all buckets, and schedule the jobs in
U ′′ by the 3-approximation of Chang et al [5] upon a new set of machines
(we will bound the number needed).

Algorithm RunHeavy

1. Let U initially be the set of all jobs in the bucket. Split machines into groups
M1 and M0; we will require at most m machines in each group (see Propos-
ition 14 below).

2. For t = kp from r′min to u′max:
(a) Let Jt = {j ∈ U : s0j = t}. Let k1 = b|Jt|/gc and run k1 groups of g

jobs from this set on the group of machines Mk mod 2 with start times
sj = max(s0j , rj). Remove these jobs from U .

(b) Let J ′t = {j ∈ U : s0j ≤ t ≤ u′j}. Let k2 = b|J ′t|/gc jobs, and run k2
groups of g jobs from this set on the group of machines Mk mod 2 with
start times sj = max(s0j , rj). Remove these jobs from U .

Note in the loop in RunHeavy, we only need to do something when t = s0j for
some job j so the loop is really over polynomially many t. The analysis of this
algorithm is in the Appendix; we show the resulting schedules requires at most
q(2dαemopt + 8) machines and (2α+ 1)OPT busytime.

5 Online Algorithm for Bounded Number of Machines

Since the formal details in this section are quite long, we give a brief summary of
the main idea. In order to get an online algorithm, we still use the approach of
the previous section, but interweave an agressive variant of Algorithm Doubler
in order to pick start times for the “leftover” jobs which fit poorly into their
buckets. The full result is included in the Appendix. Also, in the previous section
we used that the (rj , dj , p = pj = 1) problem was exactly solvable offline. In this
section, we instead rely upon the online e-competitive algorithm of [2] for this
same problem, and then use our g =∞ algorithm in order to schedule the jobs
in U ′′ online with bounded performance.

6 Simultaneous Optimization of Busy Time and Machine
Usage

6.1 Lower Bounds

Proposition 6 For any input g, there exist input instances (with g processors
per machine) where every machine-optimal schedule uses (g−ε)busyopt busy time
for ε arbitrary small.
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Proof. Fix 1 > δ > 0. Release g jobs of length 1 at time 0 with availability
windows [0, g). For k = 0 to g− 1, release g− 1 jobs of length δ with availability
windows [k, k+ δ), and g− 1 jobs of length δ with availability windows [k+ 1−
δ, k + 1). The machine-optimal schedule runs all jobs on one machine, but due
to the presence of the δ-jobs cannot overlap the execution of the long jobs, and
thus has busy time cost g (see Fig. 2a ). The busy time optimal schedule runs
the δ jobs on a separate machine and runs all of the long jobs in parallel, giving
a busy time cost 1 + 2gδ. Thus the ratio is g

1+2gδ and taking δ sufficiently small
gives the desired result.

0 1 2 3 g − 1 g

δ

OPT cost on one machine = g

g − 1

interval jobs

g unit jobs

δ δ δ δ δ

(a) On one machine the busytime is g.

0 1 2 3 g − 1 g

δ
g − 1

interval jobs

g unit jobs

δ δ δ δ δ

OPT cost on two machines = 1 + g · 2δ

(b) On two machines the busytime is 1 + 2gδ.

Figure 2: Illustrations of trade-off lower bounds.

Proposition 7 For any g, there exist input instances where every busy time
optimal schedule uses gmopt machines, even with the restriction pj = p.

Proof. We set p = pj = 1 for all jobs. For k = 0 to g − 1, we release an interval
job with availability window [k/g, k/g+1), and we release g(g−1) unconstrained
jobs with availability windows [0, 2g2).

There exists a busy time optimal schedule using g machines, which runs g−1
unconstrained jobs along with a single interval job together on a machine. Here
the busy time cost equals the load bound exactly. There exists a feasible schedule
using only 1 machine: for k = 0 to g − 1, on processor k of the machine it runs
first the interval job followed by g − 1 unconstrained jobs, end-to-end. Thus
mopt = 1.

Now consider any schedule using fewer than g machines. By the pigeonhole
principle, it must run two interval jobs on a single machine M . Let these jobs
start at k1/g and k2/g respectively with k1 < k2; then the processor running the
job at k2/g must be idle in [0, k2/g) ⊃ [k1/g, k2/g). Since the load is positive but
below g in this interval, the busy time exceeds the busy time lower bound, and
so is greater than the cost of the busy time optimal schedule described earlier.

Acknowledgements: We are grateful to Chunxing Yin for extremely useful
discussions.
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7 Appendix: Busy Time Scheduling of Equal-length Jobs
on a Bounded Number of Machines

Although it is impossible in the general case (see Lower Bounds, Section 6),
in the case of pj = p we are able to compute a schedule which is (1, O(1))-
approximate, i.e. with the optimal number of machines and O(1) busy time vs.
the busy time optimum. A lower bound shows that a (O(1), 1)-approximation is
impossible to achieve, even in this scenario. In addition, we cannot get a result
of the type (1, O(1)) for non-indentical job lengths (see Section 6).

Below we give an algorithm which computes the minimum number of ma-
chine and then generates a schedule. Of course, if we instead have a fixed machine
budget then the algorithm can be used to either generate a feasible schedule or
show it is infeasible. In this algorithm we let jobs be scheduled cyclically on
machines: i.e. in the case g = 1, if we order jobs by increasing start time as jobs
J0, J1, J2, . . . then they would go onto machinesM0 mod m,M1 mod m,M2 mod m, . . ..
For larger g, we would have the first g jobs on M0, etc.

We now give an intuitive description of the algorithm. One hard problem
when trying to generate a schedule satisfying the (1, O(1)) bound is getting any
feasible schedule with the correct number of machines; recently, a nice O(n2)
algorithm was developed by Ortiz and Quimper [16] but before that the best
algorithm by Simons and Warmuth, based on the concept of “forbidden regions”,
was considerably more complicated [19]. However, all of the algorithms have the
nice property that they generate left-shifted schedules (defined below), informally
speaking starting jobs as early as possible. So instead of trying to solve the
problem “from scratch” by a totally new method, we instead start with a left-
shifted schedule and run a single-pass “pushing scanline” which, as it meets the
initial start time of each job, begins pushing it along with the scanline until
either a large number of jobs are clustered near the scanline (Step 3 (b)), or
until a latest start time is met (Step 3(c)). We are then able to argue a crucial
property (Prop 9) based on the intuition that if two jobs i and j both caused
step 3 (c) to occur and job j starts after job i in the initial schedule, then their
intervals must be disjoint; otherwise, the left-shifted initial schedule would only
scheduled job j so much after the latest start time of job i if there were many
jobs near job i keeping the machine busy, and in this case step 3 (b) would have
been executed. (It turns out that 3p factor in step 3 (b) is crucial to the last
part of this argument.)

We now make the intuition formal. Recall that w.l.o.g. we can assume that
the release times and deadlines are integral.

Definition 1 A schedule (sj ,mj) using m machines is left-shifted when for
every job j and time rj ≤ t < sj, there exists a time t′ ∈ [t, t + pj) such that
|{k : [sk, sk + pk) 3 t′}| ≥ mg. Informally, this means that at every time t there
are mg jobs blocking job j from starting.

If a feasible schedule is not left-shifted, a single left-to-right pass over the jobs,
swapping jobs to the earliest time t which violates the left-shifting property, will
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give a feasible left-shifted schedule. However, the published feasibility algorithms
generate schedules that minimize

∑
Cj (where Cj is the job completion time)

[16], which is easily shown to imply the left-shifted property, and so running
such a job-swapping pass is not actually necessary.
Algorithm Compact

1. Compute a feasible schedule S with the minimum number of machines by
binary search (0 ≤ mopt ≤ n), using a feasibility algorithm for the prob-
lem with mg identical machines, each with one processor. The best known
algorithm is the O(n2) feasability algorithm of Lopez-Ortiz and Quimper
[16].

2. Ensure that S is left-shifted. Let s0j denote the start time of job j in S, and

let sj := s0j . Let K := ∅ and P := ∅.
3. For t from rmin to dmax: (main loop)

(a) For every unscheduled job j, let sj := max{s0j , t}. Let U be the set of
unscheduled jobs.

(b) If |{j ∈ U : sj ∈ [t, t + 2p]}| ≥ mg, run each job j in this set at time
sj . Let K := K ∪ {[t, t + 3p)}. We say these jobs were run in a cluster.
Return to the main loop at t := t+ 2p.

(c) Otherwise if t = uj for some unscheduled job j, run each job in the set
{j ∈ U : sj ∈ [t, t + p]} at its start time sj . Return to the main loop at
t := t+ p. Let P := P ∪ {j}.

In step 3 it is necessary to consider only t ∈ {uj , sj − 2p}, so we can run this
step in linearithmic time. As a matter of terminology, we say we executed a step
with an if-condition when the if-condition was true, i.e. we executed the body
of the conditional.

We now begin the analysis. As in the previous section, it is trivial to verify
that the resulting schedule contains all jobs, but now the feasibility becomes non-
trivial since we do modify the start times of some of the jobs from the initial
feasible schedule.

Proposition 8 The generated schedule is feasible on m = mopt machines.

Proof. We inductively verify that at every time t, after executing step 3 (a) there
exists a feasible schedule starting jobs at time sj . On the first iteration this is
trivial, because after 3 (a) sj = s0j . Observe that if in the previous iteration we
executed either step 3(b) or step 3(c), then that iteration scheduled every job j
with s0j < t so at time t no job’s start time is modified. Thus from now on we
may assume we did not execute either step 3(b) or 3(c) in the previous iteration.

Suppose for contradiction that at time t, after executing step 3 (a) there does
not exist a feasible schedule with jobs starting at time sj . Then by Proposition 1,
we know at some time t′ there are more than mg jobs j with [sj , sj + pj) 3 t′.
The only possible such t′ is t′ = t+p−1, because the number of jobs containing
every other (integer) point of time stayed constant. However, if this is true then
there are more than mg jobs with start times in the window [t−1, t+2p−1) and
so in the previous iteration step 3(b) should have been executed. Contradiction.



Busy-Time Scheduling on a Bounded Number of Machines 15

Proposition 9 The intervals [rj , dj) for j ∈ P are mutually disjoint. (It follows
that |P |p ≤ OPT .)

Proof. By induction on |P |. Suppose we are at step 3(c) and job j is about to
be added to the set P . Let job i = argmaxi∈P di, and suppose for contradiction
that rj < di. We know that s0j > di, otherwise at step 3(c), time t = si, job j

would have sj = max{s0j , si} ≤ di and thus would have been scheduled with job

i. Because ri < di < s0j , by the left-shifting property of the initial schedule we

know that |{k : [s0k, s
0
k + p) 3 di}| ≥ mg. At time t = si step 3(b) we would have

had sk = max(si, s
0
k) = s0k for each of the job k above, and thus there would

have been more than mg jobs with start times in [si, si+2pj) so step 3(b) would
have been executed, running job i in a cluster. Then we would have job i /∈ P , so
by contradiction rj ≥ di. Since di is maximal, it follows that [rj , dj) is disjoint
from every [rp, dp) for p ∈ P . The claim now follows by combining this with the
inductive hypothesis.

Theorem 2. Algorithm Compact is a 6-approximation for busy time, and gen-
erates a feasible schedule using mopt machines.

Proof. We only need to verify the busy time approximation ratio. Let T be the
set of (m, t) where machine m is active at time t. Since every job is scheduled in
either step 3 (b) or step 3 (c), we know that its execution time is either contained
in one of the intervals in K, or in a window [sj , sj + 2p) for j ∈ P , thus∑

m

µ({t : (m, t) ∈ T}) ≤
∑
I∈K

mµ(I) +
∑
j∈P

ηjµ([sj , sj + 2p))

where ηj denotes the number of machines used in running the jobs in [sj , sj+2p).
We bound the first sum on the rhs and part of the second sum by observe that
cyclic scheduling gives a schedule every machine processes at least g jobs in an
interval I (of length 3p) for the first sum and for the second sum, all but at
most 2 (the first and last machine used when scheduling jobs for this interval in
step 3 (c)) of the ηj machines used process at least g jobs in each time interval
[sj , sj + 2p). Thus the load on those machines in those time intervals is at least
min(1/3, 1/2) = 1/3. To bound the remaining terms in the final sum, also by
cyclic scheduling we know that for each j ∈ P the latest job scheduled on the
first machine used starts before every job scheduled on the last machine. Thus
their busy windows overlap by at most p and their total busy time is at most
3p. Therefore, combining this with the load bound we can bound the above by

3OPT +
∑
j∈P

3p ≤ 6OPT

using |P |p ≤ OPT .

We note that the above analysis gives a 5-approximation when mopt = 1.
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7.1 General Case, g < ∞

Combining with the bucketing algorithm given by Shalom et al [18] this gives
a O(log pmax

pmin
)-competitive online algorithm for busy time scheduling. More pre-

cisely, because the cost of their algorithm is bounded by 4 times the weight of the
input jobs, and 1 times the g =∞ lower bound, the approximation is 9 log pmax

pmin
.

Running Algorithm Doubler offline and combining with the 3-approximation
of Chang et al [5] gives a fast 7-approximation to the optimal busy time schedule.
This is because the Greedy Tracking algorithm [5] takes as input a g =∞ sched-
ule using busytime T and outputs a schedule with cost at most T + 2w(J)/g ≤
T + 2OPT where w(J) denotes the total processing time of all jobs. Since
T ≤ 5OPT using our algorithm, the cost is bounded by 7OPT .

If we are willing to grant the online algorithm a lookahead of 2pmax then we
can get a constant factor online algorithm. We use our g =∞ online algorithm to
determine the time placement of jobs; this algorithm requires no lookahead so we
now know the start time of jobs 2pmax ahead of the current time. We now run the
offline machine-assignment algorithm in windows of the form [kpmax, (k+2)pmax)
for k ∈ N. We can bound the cost of even k by 5OPT +2w(J0)/g where w(J0) is
the total processing time of jobs run in windows with even k; adding the matching
term for odd k shows that this gives a fast 2 ∗ 5 + 2 = 12 approximation.

8 Appendix: Offline Algorithm for Bounded Number of
Machines (with proofs)

In this section we will use the fact that scheduling jobs on a minimum number of
machines with integer release times and deadlines and with p = pj = 1 is trivial
offline. For a fixed m, it is well-known, by a swapping argument that an EDF
(earliest-deadline first) schedule, i.e. one given by running at each time up to m
of the jobs with earliest deadlines, gives a feasible schedule iff the input instance
is feasible. Computing the minimum m can be done by binary search in log n
steps.

We would like to describe some intuition before launching into the formal
analysis. As before, we use something like a “pushing scanline” approach, start-
ing from a left-shifted schedule and starting a group of jobs whenever a large
number have been pushed together. To make this approach have bounded busy
time usage, we need to bucket jobs by similar lengths and use the approach on
a per-bucket basis, but this alone cannot attain our desired performance ratio,
because we may need, for busy time purposes, to group some long jobs with some
short jobs. (If we are never willing to group together jobs of different lengths
then it is clear we cannot get better than a O(g) busy time on difficult input
instances.) Therefore, in each bucket, when a job does not nicely group together
with other jobs of the same length, we temporarily drop it. A second “clean-up
pass” (step 3 below) runs the remaining jobs using an algorithm which has good
busy-time performance but a priori unbounded machine usage. By arguing that
we drop few jobs with overlapping availability times from each bucket, it is then
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possible to bound the machine usage (see proof of Theorem 4); this is not dis-
similar in spirit to the disjointness argument from the previous section, but is
complicated by all of the rounding that occurs in the bucketing process.

We now present a (O(log pmax/pmin), O(1))-approximation algorithm for the
general problem. Fix a constant3 α > 1.

1. Bucket jobs by processing time increasing exponentially by α, so the buckets
contain jobs of processing time in the intervals [pmin, αpmin), [αpmin, α

2pmin), . . . ,

[αq−2pmin, α
q−1pmin), [αq−1pmin, α

qpmin] where q =
⌈
logα

pmax
pmin

⌉
.

2. For each bucket Bi
(a) Let p be the supremum of the processing times of jobs in this bucket.

We round job availability constraints down to multiples of p, so r′j =
pbrj/pc, u′j = pbuj/pc, and p′j = p. This is a unit job scheduling problem
after we rescale by a factor of p.

(b) We generate a left-shifted feasible schedule (referred to as the initial
schedule) for the rounded (r′j , d

′
j , p
′
j) instance using the minimum number

of machines m. Let s0j be the start time of job j in this schedule.
(c) Execute Algorithm RunHeavy.
(d) Let U ′i denote the set of jobs unscheduled in Bi after running Algorithm

RunHeavy.

3. Now let U ′′ be the union of the U ′i for all buckets, and schedule the jobs in
U ′′ by the 3-approximation of Chang et al [5] upon a new set of machines
(we will bound the number needed).

Algorithm RunHeavy

1. Let U initially be the set of all jobs in the bucket. Split machines into groups
M1 and M0; we will require at most m machines in each group (see Propos-
ition 14 below).

2. For4 t = kp from r′min to u′max:
(a) Let Jt = {j ∈ U : s0j = t}. Let k1 = b|Jt|/gc and run k1 groups of g

jobs from this set on the group of machines Mk mod 2 with start times
sj = max(s0j , rj). Remove these jobs from U .

(b) Let J ′t = {j ∈ U : s0j ≤ t ≤ u′j}. Let k2 = b|J ′t|/gc jobs, and run k2
groups of g jobs from this set on the group of machines Mk mod 2 with
start times sj = max(s0j , rj). Remove these jobs from U .

For space reasons the proofs have been moved to the Appendix. We note that
although the time complexity of our algorithms depends on log pmax

pmin
, since we

assume inputs are integral log2 pmax is bounded by the number of bits in the

3 The choice of α will involve a trade-off between the constants in the busy time and
machine usage ratio.

4 For ease of presentation, we presented this as a for-loop over time; however, to ensure
that it is polynomial time, observe that we only actually need to run iterations when
t = s0j for some job so the actually loop is linearithmic.
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processing time of some job, hence our algorithm is polynomial-time in the size
of the input. We also note that the algorithm picks starting times respecting
[rj , dj ] constraints, from the following two (trivial) propositions:

Proposition 10 Fix a bucket. Suppose r′j ≤ s′j ≤ u′j. Then if we let sj =
max(s′j , rj), we have rj ≤ sj ≤ uj.
Proof. That rj ≤ sj is immediate from its definition. We must have one of
sj = s′j or sj = rj . If sj = s′j , then s′j ≤ u′j = pbuj/pc ≤ uj . If sj = rj , then by
assumption (see the introduction) sj = rj ≤ uj .
Proposition 11 Start times sj selected by this algorithm respect release time
and deadline constraints, i.e. rj ≤ sj ≤ uj.
Proof. This is already verified for start times chosen by Doubler. This just needs
to be verified for steps 2(a) and 2(b) of RunHeavy, at which point for every job
j being run, we trivially have r′j ≤ t ≤ u′j , using the fact r′j ≤ s0j ≤ u′j since s0j
comes from a feasible schedule. Proposition 10 then implies the result.

Proposition 12 Fix a bucket. Let m be as above, and let mopt (for this lemma
only) denote the minimum number of machines required to process the jobs in
this bucket with their true (rj , dj , pj) values. Then m ≤ dαemopt.

Proof. Let sj denote the start times of jobs in the schedule of the (rj , dj , pj)
input on mopt machines, and let s′j = pbsj/pc, so s′j ∈ [r′j , u

′
j ]. We claim that

the (s′j) determine a feasible schedule for the (r′j , d
′
j , p
′
j) using at most dαemopt

machines; this means (e.g. by Proposition 1) that we have to verify that

|{i : si ∈ [t, t+ p)}| = |{i : s′i = t}| ≤ dαemopt.

for all t = kp. Fix t. Using Proposition 1 and p/α ≤ pj , we know that in the
initial schedule for any t′

|{j : [sj , sj + p/α) 3 t′}| ≤ |{j : [sj , sj + pj) 3 t′}| ≤ mopt.

Now if we consider points t′ of the form t + `p/α − ε for 1 ≤ ` ≤ dαe and ε
sufficiently small (more precisely ε < infsj∈[t,t+p) t+ p− sj), the time interval of
every job with si ∈ [t, t+ p) will contain one of these points, so there can be at
most dαemopt such jobs total.

Proposition 13 Fix a bucket. At every time t, we have k2 ≤ 1, k1 + k2 ≤ m
and after executing step 2 (b) we have |J ′t ∩ U | < g.

Proof. By induction on t. Denote by U1 the set U after executing step 2 (a).
Observe that J ′t ⊂ (J ′t−p ∩ U1) ∪ {j ∈ U1 : s0j = t}, and the two sets unioned
on the rhs are both of cardinality less than g, so |J ′t| < 2g and k2 ≤ 1. If
k1 = m, so the maximum mg jobs were run at time t in the initial schedule,
then {j ∈ U1 : s0j = t} = ∅ so |J ′t| < g and k2 = 0. Henceforth we must
only consider the case when k1 < m. If |J ′t| < g then we are done. Otherwise,
|J ′t| ≥ g, then at step 2 (b) g of these jobs will be scheduled and removed from
U , so |J ′t ∩ U | < 2g − g = g and k2 = 1, hence k1 + k2 ≤ m.
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Proposition 14 Fix a bucket. Machine groups M1 and M0 each require at most
m machines.

Proof. W.l.o.g. we prove this only for M0. Observe that at time t = 2k′p for some
k′ ∈ Z, the start times of the jobs we run at step (2) of algorithm RunHeavy
lie within [2k′p, 2k′p + p), hence the jobs execution windows [sj , sj + pj) are
contained in [2k′p, 2k′p + 2p). Thus when running each iteration of the loop at
step (2) of RunHeavy with k = 2k′, every machine in M0 has completed all of
its previously scheduled jobs and is now idle. At this point, to schedule the jobs
run at steps 2(a) and 2(b) we will need at most k1 + k2 ≤ m idle machines, by
Proposition 13; hence we need no more than m machines in M0.

Proposition 15 Fix a bucket. If i ∈ U ′, then |{j ∈ U ′ : [r′j , u
′
j ] 3 s0i }| < g.

Proof. Because job i was not run in step 2 (a) at time s0i , we in particular know
that fewer than mg jobs were scheduled in the initial schedule at time s0i . Then
by the left-shifting property, there exists no job j such that r′j ≤ s0i and s0j > s0i .

By Proposition 13, there exist fewer than g jobs in U ′ such that s0j ≤ s0i ≤ u′j .

Proposition 16 Fix a bucket. For any t, |{j ∈ U ′ : [r′j , u
′
j ] 3 t}| < 2g.

Proof. Let s0α be maximal such that s0α ≤ t, and let s0β be minimal such that

s0β > t. For any j such that [r′j , u
′
j ] 3 t, either s0j ≤ s0α or s0j ≥ s0β , so either

s0α ∈ [s0j , t] ⊂ [r′j , u
′
j ] or s0β ∈ [t, s0j ] ⊂ [r′j , u

′
j ]. By Proposition 15, fewer than g

jobs can contain each of s0α and s0β .

Proposition 17 Fix a bucket. For any t, |{j ∈ U ′ : [rj , dj) 3 t}| < 4g.

Proof. Let j be such a job and let t′ = pbt/pc. By monotonicity of floor, t′ ∈
[r′j , pbdj/pc] ⊂ [r′j , u

′
j + p]. Therefore [r′j , u

′
j ] contains at least one of {t′, t′ − p},

so the result follows by Proposition 16.

Theorem 3. Given an input of fixed interval jobs which can be feasibly scheduled
on γ processors, the algorithm of Chang et al uses at most 2γ processors [5].

Proof. We briefly recall the algorithm: define a track to be a disjoint union of
job intervals; then the algorithm repeatedly picks a track of maximal measure
(length) from the set of unscheduled jobs and schedules the jobs in this track
onto the next processor.

Suppose that this algorithm uses β processors. Let j be an arbitrary job in
the final track occupying the time interval [sj , sj+pj). Let T be a track assigned
to any other processor. We claim that T 3 sj or T 3 sj + pj . Suppose otherwise;
then µ(T ∩ [sj , sj + pj)) < pj , so the track (T \ [sj , sj + pj)) ∪ [sj , sj + pj) is a
valid track of greater measure, violating maximality of T .

Finally, by the pigeon hole principle either |{T 3 sj}| ≥ β/2 or |{T 3 (sj +
pj)}| ≥ β/2, so the result follows from Proposition 1.
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Theorem 4. The resulting scheduling requires at most q(2dαemopt + 8) ma-
chines.

Proof. It follows from Proposition 17 and Proposition 1 that scheduling the jobs
in U ′′ requires at most 4qg processors, i.e. 4q machines, so by Theorem 3 the
schedule actually generated for the jobs in U ′′ will require at most 8q machines.
Thus combining with Proposition 12 and Proposition 14 which tell us that Run-
Heavy uses at most 2dαemopt machines for each bucket, in total the schedule
requires q(2dαemopt + 8) machines.

Theorem 5. The resulting schedule has busy time cost at most (2α+ 1)OPT .

Proof. Similar to the previous section, observe that the load on a machine used
by RunHeavy, when active, is at least 1/2α: when RunHeavy at time t runs a
set of g jobs on a machine at time, we know by our rounding mechanism that
for a job j, rj ≤ sj + p, so every job fits in the window [t, t + 2p) and is of
length at least p/α. So by the load bound, the cost of the jobs scheduled by
the calls of RunHeavy is upper bounded by (2α)w(Jc)/g where Jc denotes the
set of jobs scheduled by RunHeavy. The algorithm of [5] has cost bounded by
2w(U)/g+OPT , so if J is the set of all jobs the cost of our schedule is bounded
by max(2α, 2)w(J)/g +OPT ≤ (2α+ 1)OPT .

Picking a particular α, for example α = 2, gives the claimed result in the intro-
duction.

9 Appendix: Online Algorithm

We now describe the algorithm in full detail. Because our algorithm is online,
we must be careful to precisely describe the flow of information, so as to ensure
that we compute the right amount of lookahead for the total algorithm. However,
a simple compositional principle makes this feasible: suppose xt represents the
input to the online algorithm at step t, and Xt = (x1, . . . , xt). Let f represent
an online algorithm which takes input from x with lookahead ` and produces
output ft at time t; then mathematically, ft is a function of Xt+`, which we
denote as ft = ft(Xt+`). Let g represent an online algorithm which needs both
the original input and the value of ft with lookahead `′; mathematically, gt is a
function of ft+`′ and Xt+`′ , so gt = gt(ft+`′ , Xt+`′) = gt(ft+`′(Xt+`+`′), Xt+`′);
since Xt+`′ is contained in Xt+`+`′ , we have verified that gt needs lookahead
`+ `′ to process the original input X. Thus when we compose online algorithms
in this fashion, the total lookahead required by the algorithm adds.

Now we describe the algorithm as a composition of phases, each with their
own lookaheads, and the lookahead of the algorithm as a whole is the sum of
these individual lookaheads. The list below consists of phases, which are in turn
composed of normal sequential steps.

1. (Lookahead 0) As before we can bucket jobs; since we assumed that our in-
puts were integral, we could bucket the processing times as [1, α), [α, α2), . . .
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and so on. For convenience, since we assume all input is integral, we actually
bucket as [1, bαc), [dαe, bα2c), . . ..

2. (Lookahead 0) Fix a total ordering <ω of jobs, such that if job i, j have d′i ≤
d′j , then i ≤ω j. Whenever we refer to selecting jobs EDF, it means select
the first jobs according to this ordering. (So we have broken ties arbitrarily,
but in a consistent fashion throughout the algorithm.)

3. (Lookahead p) For each bucket, in parallel:
(a) (Lookahead p) Let p be the maximum possible job size in the bucket.

We round job availability constraints down to multiples of p, so r′j =
pbrj/pc, u′j = pbuj/pc, and p′j = p. Note that it requires p lookahead to
round the input instance into the unit job instance, since r′j may be as
small as rj − p− ε for any ε.

(b) (Lookahead 0) This is a unit job scheduling problem after we rescale
by a factor of p. We use, with slight modification, the algorithm of [7]
(treating processors as machines) to compute online, with no lookahead,
a schedule S of the rounded jobs which uses at most deme processors,
where m is the minimum number of machines necessary to schedule
the input {(r′j , u′j , p′j)}. The slight modification is that whenever the
original algorithm would have opened η processors at time t, the modified
algorithm opens dη/pemachines, giving pdη/pe processors; at every point
in time this opens more processors than the standard algorithm, so the
generated schedule is still feasible. Let s0j be the start time of job j in this
generated schedule, and let mt(Bi) be the number of machines activated.
The start times are guaranteed to be at times of the form kp for k ∈ Z.

4. (Lookahead 0) Run FixStartTimes, using the outputs of the previous phase.
(This algorithm plays the role of both RunHeavy and Doubler in previous
sections.) This algorithm “marks for execution” a set of jobs E, which are
informally the jobs Doubler has chosen to execute; their start times are
already determined, but these are passed to the next phase to choose a
machine for them to run on.

5. (Lookahead 2p) To determine machine assignments for the jobs in E, we
use the use the technique from subsection 7.1. To recall, we assign every job
in E (now with fixed start time) to some window containing it of the form
[k, k + 2pmax), and then use the machine-selection algorithm of Chang et al
[5] to do machine selection in each window; we share machines between even
k and between odd k.

Algorithm FixStartTimes

1. Arbitrarily label the buckets as B1, B2, B3, . . .. Let U(Bi) = ∅. Let P = ∅.
As in RunHeavy (step 1), create (initially empty) sets of machines M1(Bi),
M0(Bi), M

′
1(Bi),M

′
0(Bi) for every bucket. As in Doubler, let T = {}. We

also initialize two sets of jobs, D = {} and E = {}.
2. For5 t from r′min to u′max:

5 As before, the set of t which we actually need to consider is much smaller, polynomial
size, and we write the code this way only for ease of presentation; it is especially
natural to write an online algorithm this way.
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(a) For each bucket Bi:

i. Add to U(Bi) all jobs with s0j = t in bucket i.
ii. Remove from U(Bi) any jobs in D(Bi) ∪ E.

iii. If t = kp where p = p(Bi) is the max possible processing time in
bucket Bi, execute the following steps6:

A. Let Jt = {j ∈ U(Bi) : s0j = t}. Let k1 = b|Jt|/gc and run k1
groups of g jobs, selected EDF from this set on the group of
machines Mk mod 2 with start times sj = max(s0j , rj). Remove
these jobs from U(Bi) and mark them as scheduled.

B. Let J ′t = {j ∈ U(Bi) : s0j ≤ t ≤ u′j}. Let k2 = b|J ′t|/gc jobs,
and run k2 groups of g jobs from this set selected EDF on the
group of machines Mk mod 2 with start times sj = max(s0j , rj).
Remove these jobs from U(Bi) and mark them as scheduled.

(b) Let Ut be the set of unscheduled7 jobs j which have r′j ≤ t and are not
in

⋃
iD(Bi) ∪ E. Let Ut(Bi) be those jobs in Ut from bucket Bi.

(c) If t = u′k for some k ∈ Ut, then pick such a k with p′k maximal. If
furthermore, [t, t + 2p′k) 6⊂ T , then set T := T ∪ [t, t + 2pk) and P :=
P ∪ {k}.

(d) For each bucket Bi:

i. If [t, t+ p(Bi)) ⊂ T :

A. Let J ′′k (Bi) be J ′t∩U(Bi) extended with up to g jobs from Ut(Bi),
such that |Ut(Bi) \ J ′′k (Bi)| ≡ 0 mod g. Let J ′k(Bi) = Ut(Bi) \
J ′′k (Bi).

B. Set D(Bi) := D(Bi)∪J ′k(Bi). Set E := E∪J ′′k (Bi), and for every
job j ∈ E set sj := max(t, rj).

ii. If t = kp(Bi) for some k ∈ Z: take8 up to mt(Bi)g jobs from D(Bi),
choosing earliest-deadline first; for each job j in this set, let its start
time be sj = max(t, rj) and assign it to machine group M ′k mod 2.
Remove these jobs from D(Bi).

In total the algorithm requires 3pmax lookahead. The same argument as for
Doubler shows that it schedules all the jobs:

Proposition 18 At no point in time t′ does Ut contain a job j with u′j < t′.

Proof. By contradiction; suppose there exists such a job j. Then at time t = u′j ,
step 2.c we are ensured that either a job k was chosen with p′k ≥ p′j and k ∈ P
and that after this step [t, t+2p′j) ⊂ [t, t+2p′k) ⊂ T , or if no such job was chosen
that [t, t + 2p′j) ⊂ T . Either way, we are ensured that at step 2.d.i.B, this job

must have been added to E, because since t = u′j and s0j ≤ u′j by feasibility, job j
necessarily lies in J ′t, and by assumption it lies in Ut(Bi), so it lies in J ′t ∩U(Bi),
hence J ′′k (Bi).

6 These are steps 2(a) and 2(b) of RunHeavy with U(Bi) replacing U
7 This means just that they have not been marked as scheduled in step 2.a
8 i.e. take min(mt(Bi)g, |D(Bi)|) jobs
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Proposition 19 When a job j is added to D(Bi) in step 2.d.i.B at time t, we
have s0j > t.

Proof. By contradiction; if s0j ≤ t then , since by the previous proposition t ≤ uj ,
we have that j ∈ J ′t hence it must be that j ∈ J ′′k (Bi) instead of J ′k(Bi), hence
j is not in D(Bi).

Proposition 20 Fix a bucket Bi. After each execution of step 2.d.ii, at time t,
the set of jobs assigned to machine groups M ′0 and M ′1 is a superset of the set
St = {j ∈ D(Bi) : s0j ≤ t}.

Proof. By induction on time. Supposing the IH, we need verify this only for new
elements of St (formally, elements of St \ St−1). By the previous proposition,
these are jobs which were already in D(Bi) before time t, hence their being
added to St means that s0j = t. There can be at most mt(Bi) such jobs; by
virtue of having been chosen EDF from a larger set of jobs, the subset of these
jobs which have not already been scheduled on M ′0 or M ′1 are ensured to be
subset of the up to mt(Bi) jobs chosen EDF by step 2.d.ii.

Proposition 21 Fix a bucket Bi. At the end of the loop iteration for time t,
the union Wt of the following sets of jobs:

– The set of jobs executed on M0 or M1

– The set of jobs assigned to M ′0 orM ′1
– Jobs in E
– Jobs in Ut(Bi) \ (E ∪D(Bi)).

are a superset of the set of jobs started by this point in the online unit job
schedule, i.e. the set Kt = {j ∈ Bi : s0j ≤ t}.

Proof. First observe, by the previous Proposition, that every job in Kt ∩D(Bi)
is assigned to one of M ′0 or M ′1. Thus it remains to show that Wt\D(Bi) contains
the jobs in Kt \ D(Bi). By induction on t. Consider a job j ∈ Kt \ D(Bi). If
s0j < t, then by the IH this job was in Wt−1 \D(Bi) (for a possibly smaller set
D(Bi) at time t−1). Observe that only way job j is moved from Wt−1, i.e. lies in
Wt \Wt−1 is if the job is moved into D(Bi) at step 2.d.i.B, but since j /∈ D(Bi)
this is impossible. It remains to consider when s0j = t. Once again, observe that
for any such job j which does not lie in D(Bi), it is either: 1. already contained
in E or 2. added to Ut(Bi), and possibly moved into set E at step 2.d.i.B. Either
way, we find that j ∈Wt \D(Bi).

Proposition 22 At every time t′, every job j ∈ E has r′j ≤ t′, and the same
holds for every j ∈ D(Bi) for all i.

Proof. The arguments are the same, so we present it for E. Every job in E at
time t′ was added at an earlier time t at step 2.d.ii.B. At this step, we add to
E the elements of J ′′k (Bi) ⊂ Ut, and every job j ∈ Ut has r′j ≤ t (≤ t′), by
definition of Ut (step 2.b).
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Proposition 23 The online algorithm schedules all jobs, generating a feasible
schedule.

Proof. By Proposition 10, verifying our job’s start times obey release time and
deadline constraints, when they are of the form sj = max(rj , s

′
j) for some s′j , is

reduced to verifying that start time s′j obeys the rounded r′j , u
′
j constraints. For

start times chosen in step 2.a.iii, this argument is unchanged from Proposition 11.
For start times of jobs in E chosen in step 2.d.ii.B, we must verify that r′j ≤
t ≤ u′j . That r′j ≤ t is Proposition 22 above. To show t ≤ u′j , suppose for
contradiction that t > u′j , then at time u′j < t, step 2.d.iii this job would already
have been added to either D(Bi) or E, hence it cannot be in Ut; contradiction.

Finally we consider start times of jobs selected in step 2.d.iv. Once again by
Proposition 22 we have r′j ≤ t for all j ∈ D(Bi) scheduled at this step, with the
loop at time t. To show t ≤ u′j , observe that by Proposition 20 that every job in

D(Bi) is scheduled at step 2.d.ii at a time t ≤ s0j ≤ u′j .
(The following proposition is not needed, but is an easier case of the one which
follows.)

Proposition 24 Suppose an input instance with g = ∞ can be scheduled with
busy time busyopt with start times sj, then the rounded input instance with s′j =

pmax

⌊
sj

pmax

⌋
, r′j and u′j down to a multiple of pmax by the same formula, and

p′j = pmax can be scheduled with busy time at most (1 + 2pmaxpmin
)busyopt.

Proof. Henceforth p = pmax. Let T =
⋃
j [sj , sj + pj) so µ(T ) = busyopt. Split

T into connected components, so T = [α1, β1) ∪ · · · [αr, βr) and every interval
[sj , sj + pj) is contained in one of these components. After rounding, the jobs

occupying time interval [αi, βi) are now contained in the interval [p
⌊
αi
p

⌋
, p +

p
⌊
βi
p

⌋
), which has length at most βi − αi + 2p. Since βi − αi ≥ pmin, the ratio

of lengths is at most
βi − αi + 2p

βi − αi
≤ 1 + 2

pmax
pmin

.

Proposition 25 Suppose we have an input instance with g = ∞ like before
with optimal busy time busyopt. After performing bucketed rounding (step 3.a),
the optimal busy time for the new input instance has busy time at most (1 +
2α)busyopt.

Proof. Once again, pick an busytime optimal schedule with start times sj and let

T =
⋃
j [sj , sj+pj), and perform bucketed rounding so s′j = p

⌊
sj
p

⌋
where p is the

length of the largest job in the bucket. Decompose T into connected components
[α1, β1) ∪ · · · ∪ [αr, βr). For an interval [αi, βi), the Bi be the bucket containing
the job with largest processing time p in this interval. Let p′ be the length of the
longest job in this bucket. After rounding, the jobs formerly contained in this
interval must now be contained within the interval [αi − p′, βi − p′) and

βi − αi + 2p′

βi − αi
≤ 1 + 2

p′

p
≤ 1 + 2α.
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Theorem 6. The online algorithm requires q(16+4dedαemopte) machines. Here
q = dlogα pmaxe, which is the maximum number of buckets used.

Proof. First we bound machine usage for jobs in E. Fix a bucket Bi. At each
time t in step 2.d.i.B, we run at most 2g jobs in E from this bucket, and this
only occurs at times t which are either a multiple of the form kp (p = p(Bi),
k ∈ Z) , or at which a new job has been added to P , and no job was added to
P since the last multiple kp(with processing time at least p(Bi)/2); otherwise,
because jobs are released at multiples of p(Bi), there are no new jobs in Ut(Bi)
to run. Thus, with rounded start times, at most 2(2g) = 4g jobs can overlap at
the same time, and this can only be achieved in the overlap created when a job is
added to P at a time which is not a multiple of kp. Thus, after unrounding start
times (i.e. letting sj = max(s′j , rj), which can increase sj by at most p where p
is the maximum length of a job) and unrounding processing times, at most 8g
jobs can overlap at any point in time, so by Proposition 1 at most 8 machines
are needed in the machine-optimal schedule to run these jobs. Summing over
the buckets gives a bound of 8q for the machine-optimal schedule, and finally by
applying Theorem 3 twice, once for scheduling in step (4) with even k and once
for odd k, the schedule actually generated for the jobs in M will require at most
8q + 8q = 16q machines.

Next we bound machine usage for step (2b) of FixStartTimes, the component
of the algorithm informally corresponding to RunHeavy. First, consider first a
particular bucket. Taking into account that our initial schedule (given by the s0j )
in each bucket uses at most deme machines, where m is the minimum number
of machines to schedule the rounded input (r′j , u

′
j , p), we observe that we can

apply Proposition 12 and (the argument of9) Proposition 14 to show that the
schedule uses in total 2qdedαemopte machines.

Finally, bounding machine usage for jobs run in step (2.d.ii), i.e. those from
D(Bi), is similar: once again by Proposition 12, the schedule with rounded start
times takes at most qdedαemopte machines in each of M ′0,M

′
1, and unrounding

does not affect this (this argument has been made before, but explicitly: because
we alternate machine groups and unrounding moves start times by only at most
p, jobs scheduled on different iterations of the loop can never overlap.) This
gives a bound of 2qdedαemopte for this part of the algorithm. Then in total the
algorithm uses q(16 + 4dedαemopte) machines.

Theorem 7. The online algorithm requires at most (20+42α)busyopt busy time.

Proof. To bound the busy time for step 2.a.iii of FixStartTimes, i.e. the Run-
Heavy component of the algorithm, is just a load-bound argument exactly the
same as found in the proof of Theorem 5; the cost is bounded by 2αw(Jc)/g
where Jc is the set of jobs scheduled in step (2b) (i.e. those not in M). To bound
the busy time for step 2.d.ii is similar, once we note that this step, like 2.a.iii,
always schedules a multiple of g jobs. This is trivially verified by induction: in

9 Technically we must change the names of some variables in Proposition 14 and the
proposition leading up to it, but nothing more complicated is required.
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step 2.d.i.B the set of jobs added to D(Bi) always has size a multiple of g (see
step 2.d.i.A), so the number of jobs run, min(mt(Bi)g, |D(Bi)|), is a multiple of
g hence the size of D(Bi) after removing these jobs is still a multiple of g. Thus
we can apply the same load-bound argument as for RunHeavy to find that the
cost is bounded by 2αw(Jd)/g where Jc is the set of jobs run in step 2.d.ii.

To bound the cost of jobs in E, informally the Doubler component of the
algorithm, we use a simple simulation argument: the rounded start times selected
in step 2.i.B (i.e. the rounded start time of a job is t for the loop iteration it was
started in) are the same as those that would be selected by algorithm Doubler if
run on the jobs in E with the rounded constraints (r′j , u

′
j , p
′
j). To verify this, we

first need to verify that any job k picked in step 2.c to add to P is later added to
E; however, because t = u′k we know that s0k ≤ t ≤ u′k so t ∈ J ′t ∩ U(Bi) where
Bi is the bucket containing job k, it is ensured that at step 2.d.i.B at time t this
job is in J ′′k (Bi), hence added to E. We next observe that if we remove step 2.b
from Doubler, and add to step (c) a condition that we only modify T and P if
[uj , uj + pj) 6⊂ T , then algorithm Doubler behaves identically: in the modified
algorithm, either step (c) is a no-op on this iteration of the loop, or if it isn’t
a no-op (so [uj , uj + pj) 6⊂ T , then because [uj , uj + pj) 6⊂ T , this job j would
still have been chosen by step 2(c) of the original algorithm, and those jobs that
would have been scheduled in step 2(b) are still scheduled in step 2(d) at the
same start times. Now we can directly observe that steps 2 (c) and 2 (d) of this
modified Doubler act identically (by choosing start times and modifying T and
P ) when fed input set E, as steps 2.c and 2.i.B do when running our algorithm.

Thus, combining the guarantee of Theorem 1 with the rounding-cost bound
from Proposition 25, we get a bound of 5(2α+ 1)busyopt on the busytime of the
rounded schedule of jobs in E running on a processor with g = ∞, where each
job starts at the time it was added to E and takes up p′j time. If we denote
these rounded start times as s′j , and let T ′ =

⋃
j∈E [s′j , s

′
j + p′j), then µ(T ′) is

the busytime we just bounded. Decompose T ′ into connected components, so
T ′ = [α1, β1) ∪ · · · ∪ [αr, βr). Since we let sj = max(s′j , rj) in step 2.d.B (recall
s′j = t here), after unrounding the jobs in interval [αi, βi) now are contained
within an interval [αi, βi + p) where p is the maximum of the p′j for jobs in this
interval. The same type of ratio bound as in Prop 25 observes that

βi + p− αi
βi − αi

≤ 2,

so the measure of the g = ∞ cost of running the jobs (henceforth denoted as
µ(T ), where T is the times the machine is on) at their unrounded start times is
at most 10(2α + 1)busyopt. Then just as in subsection 7.1, when we apply the
algorithm of Chang et al [5] for even k and for odd k in step 4, we get that the
cost is bounded by 2µ(T )+2w(E)/g. Finally, we see the total busy time is upper
bounded by

2µ(T ) + 2w(E)/g + 2αw(Jd)/g + 2αw(Jc)/g

≤ [20(2α+ 1) + 2α]busyopt = [42α+ 20]busyopt
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