
Homework #1
DATA 37200: Learning, Decisions, and Limits (Winter 2025)

Due Friday 01/31, 9:00 pm

General Instructions The assignment is meant to practice your understanding of course materials, and
some of them are challenging. You are allowed to discuss with fellow students, however please write
up your solutions independently (e.g., start writing solutions after a few hours of any discussion) and,
equally importantly, acknowledge everyone you discussed the homework with on your writeup. All course
materials are available here https://frkoehle.github.io/data37200-w2025/. Unless particularly stated, any
results/theorems covered in our class can be used without the need of a proof.

Notably, attempt to consult outside sources, on the Internet or otherwise, for solutions to any of these
homework problems is not allowed. Needless to say, you are not allowed to query any Large Language
Models (LLMs) for solving the HW problems.

Whenever a question asks you to “show” or “prove” a claim, please provide a formal mathematical
proof. These problems have been labeled based on their difficulties. Short problems are intended to take
you 5-15 minutes each and medium problems are intended to take 15-30 minutes each. Long problems
may take anywhere between 30 minutes to several hours depending on whether inspiration strikes. Note
that, the total score is meant to not be normalized to 100 (for instance, this HW has 30 in total for regular
students and additional 15 points for those who take it as elective).

Finally, please write your solutions in latex — hand written solutions will not be accepted. Hope you
enjoy the homework!

Problem 1: Properties of KL-Divergences

Let p, q be two distributions with finite support X . Prove the following three properties about their KL-
divergence.

Note: while for most HW problems, you can directly cite any results we covered in class as granted, for
this problem you will have to (and should be able to) derive proofs from scratch using basic algebra.

1. (10 points) KL(q, q) ≥ 0. Moreover, KL(p, q) = 0 if and only if p = q.

2. (10 points) For i = 1, · · · , n, let pi, qi be two distributions supported on finite set Xi and let p =
Πn

i=1pi, q = Πn
i=1qi be their product distributions, respectively. Show that KL(p, q) =

∑n
i=1KL(pi, qi).

3. (20 points) For any event A ⊆ X , show that

2[p(A)− q(A)]2 ≤ KL(p, q)

where p(A) =
∑

x∈A p(x).

1

https://frkoehle.github.io/data37200-w2025/


Hint: To prove the third property, there are multiple approaches. For some approach, it may be helpful to
check out the following basic algebraic conclusions or relations: (a) what’s the relation between |p(A) −
q(A)|2 for any A and the l1 distance between vectors p, q; (b) given any 1 > p1 ≥ q1 > 0 and 1 > p2 >
q2 > 0, which of the following two terms is larger: p1 ln(p1q1 ) + p2 ln(

p2
q2
) and (p1 + p2) ln(

p1+p2
q1+q2

)?

Problem 2: KL-Divergences for Example Distribution

Recall from class that RCϵ is a Bernoulli distribution with mean (1 + ϵ)/2.
Prove the following conclusions.

1. (10 points) KL(RCϵ, RC0) = Θ(ϵ2) for any ϵ ∈ (0, 1/4) where Θ comes from big O and big Theta
notation.

2. (10 points) KL(RC0, RCϵ) = Θ(ϵ2) for any ϵ ∈ (0, 1/4).

Problem 3: Characterizing “neglected arms” under any MAB algorithm

(20 points) Consider any multi-armed bandit instance with k arms where each arm follows a Bernoulli
distribution with realized rewards in {0, 1}. Prove that, for any deterministic bandit algorithm,1 there exits
a subset of arms J ⊆ [k] = {1, · · · , k} such that

1. |J | ≥ k/3

2. for any j ∈ J , E(NT
j ) ≤ 3T

k where NT
j is the total number of times arm j is pulled until time T in

this given MAB instance.

3. for any j ∈ J , Pr(IT = j) ≤ 3
k where IT ) denotes the (random) arm that this algorithm pulls at

round T .

Problem 4: Improving UCB Gap-Independent Regret Analysis

(20 points) In the class, we showed an O(k
√
T log T ) gap-independent regret bound for UCB (specifically,

see page 45, 46 of Lecture 2 slides in the above course link). In this question, you are tasked to improve this
bound to O(

√
kT log T ) by refining the analysis in class, assuming gap ∆i’s, σ are all upper bounded by

constants and k < T .
Formally, recall the following two lemma proved in class:

1. The regret decomposition lemma Regret = E
[∑k

i=1∆iNi(T )
]

where random variable Ni(T ) de-
notes the number of times arm i is pulled until round T ;

1Recall, deterministic bandit algorithm means it maps any realized past rewords to a deterministic choice of an arm at the next
round.
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2. For UCB, with probability at least 1 − 2/T , Ni ≤ 8σ2 log(T )
(∆i)2

+ 1 holds true with probability 1
simultaneously for every arm i ∈ [k].

Use the two lemmas above to prove the following regret upper bound for UCB

RegretT = O(
√

kT log T ) (1)

Hint: the reason that we can strengthen the analysis in class is because the upper bound T used to upper
bound Ni(T ) on slide 45 is too loose – to see this, we have

∑
iNi(T ) = T with probability 1, whereas∑

i T = kT . Think about how to leverage the equation
∑

iNi(T ) = T to tighten the regret analysis.
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