DATA 37200: Learning, Decisions, and Limits (Winter 2025)

Lecture I: Intro and the First Problem

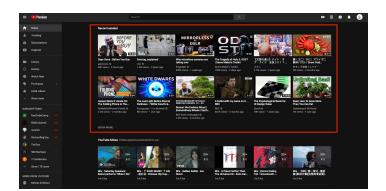
Instructor: Haifeng Xu

Outline

- Course Overview
- > Administrivia
- ➤The First Problem

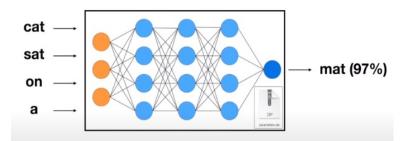
Recall: Classic Machine Learning Problems

Image recognition



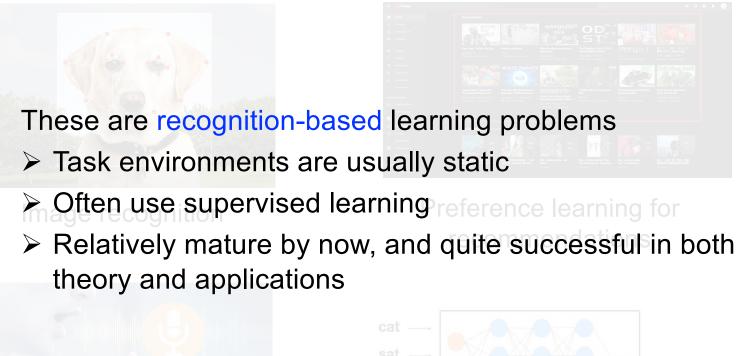
Preference learning for recommendations

Speech recognition



Next token/word prediction (for language models)

Recall: Classic Machine Learning Problems



Speech recognition

Next token/word prediction (for language models)

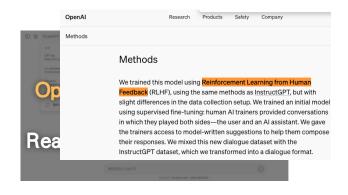
This Course: Decision-Based Learning Tasks

- Often use quite different design principles and learning techniques
 - Will see in our first learning problem why new design ideas are necessary
 - A well-known field studying this is reinforcement learning (RL), about which this course will cover a lot, though also beyond
 - Problems are often more complex
- Why more complex? To learn decisions, we have to consider many factors beyond just accuracy:
 - Rewards/payoffs/costs/utilities
 - Decision consequences your learned decisions act on (hence change) the environments
 - Conflicting interests/incentives
 - Societal issues: fairness, alignment, welfare-efficient...

Core decision-based learning techniques are underlying many breakthrough research

Deepmind's Alpha series

learn to decide next move, how to search, how to find next reasoning step

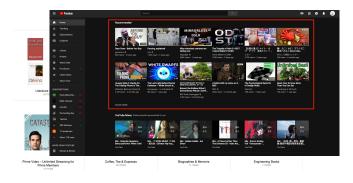


GPT-o1, even ChatGPT

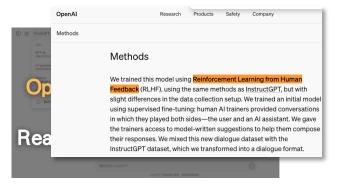
learn to find next reasoning step, to align with human's preferences/values/payoffs

Core decision-based learning techniques are underlying many breakthrough research and billions\$-scale industrial applications

Deepmind's Alpha series



Product/content recommendation



GPT-o1, even ChatGPT

How Uber's dynamic pricing model works

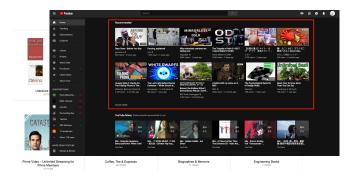
Dynamic pricing based on traffic/supply/demand prediction

Core decision-based learning techniques are underlying many breakthrough research and billions\$-scale industrial applications

Why does amazon suggest things i've already bought?

All related (43) V Sort Recommended V Ben Stevens · Follow X B.S. in Mechanical Engineering & Physics, Rose-Hulman Institute of Technology (Graduated 2017) · 7y I found myself wondering this same thing just now. I recently bought a new printer, and now most of my recommended items are printers! They should be able to tell that some items should not be recommended if similar ones have been purchased, as there is a very low

Recommendation needs consider its action consequences



Product/content recommendation

Challenge: demand/supply → price → changes demand/supply

How Uber's dynamic pricing model works

Dynamic pricing based on traffic/supply/demand prediction

Core decision-based learning techniques are underlying many breakthrough research and billions\$-scale industrial applications

Not to mention many data-driven policy/decision making problems in critical societal, health and security applications

Wow, cool! So... after this course, will I become the hero to work towards Nobel, or solving Google's/Amazon's problems?

- Not immediately...
 - Those are not easy problems to solve
 - This is designed to be a foundational (theory-focused) course
 - (Programming/implementation is also important, just not our focus)
- ➢ Goal of this course is to build your foundational understandings about
 - What key factors to consider while learning optimal decisions
 - Basic design principles of optimal learning algorithms
 - What is possible, and what is not possible
 - Along the way, also enrich your statistical and algorithmic toolkits

Learning Objectives

- Understand how to mathematically formulate and analyze models for interactive learning problems; learn how to apply core techniques from probability, statistics, optimization, etc.
- Understand key difficulties/challenges with solving RL problems
- Understand principles underlying relevant cutting-edge technologies, such as Reinforcement Learning from Human Feedback (RLHF) and AlphaGo training
- Be well-prepared to understand state-of-the-art papers about online learning, RL and data-driven decision making
- Have the foundations to work on relevant practical applications

Tentative Topics of the Course

- (week 1) Concentration bound, and UCB
- (week 2) Information-theoretic lower bound for KL and distribution testing
- (week 3-4) Elliptical potential lemma, and linear contextual bandits
- (week 5) Online learning, online gradient descent, reduction from contextual bandit to online learning
- (week 6) MDP, dynamic programming
- (week 6) Policy iteration and value iteration
- (week 7) Reinforcement learning and optimism principle
- (week 8) multi-agent RL, equilibria, counterfactual regret minimization, self-play
- (week 9) Sampled recent learning paradigms: RLHF, etc.

Targeted Audience of This Course

- Anyone planning to do research in machine learning (theoretical or empirical), particularly with human factors involved
 - The course is theory-focused, but we cover the very basics that even applied researcher should benefit from these basics
 - Even you do not work on interactive decision learning, it is still useful to see how it interplay with bandits, decisions.
- Anyone who wants to grasp the basics about how ML can be used for recommendation, preference alignment, dynamic pricing, etc.
- Anyone who want to see what other useful ML paradigms there are beyond supervised learning via large neural networks
 - Offer you a more comprehensive view about machine learning
 - Deep learning is super useful and powerful, but real industrial success also crucially hinges on other equally critical techniques

Outline

- Course Overview
- Administrivia
- ➤The First Problem

Basic Information

- Course time: Tue/Thu, 12:30–1:50 pm at JCL 011
- Lecture: in person (unless further instruction)
- Instructor: Frederic Koehler (<u>fkoehler@uchicago.edu</u>) and Haifeng Xu (<u>haifengxu@uchicago.edu</u>)
 - Joint teaching due to new development
 - Office Hour: Frederic (Tue 4:30-5:30 pm); Haifeng (Thur 4-5 pm)
 - Can add more office hour, depending on demand

≻TAs

- Aditya Prasad; office hour: Wed 2-3 pm
- Couse website: <u>https://frkoehle.github.io/data37200-w2025/</u>
 - Easier way is to search our personal website and navigates to course
- > References: linked papers/notes on website, no official textbooks
 - Slides will be posted after lectures

Prerequisites

> Mathematically mature: be comfortable with proofs

- Sufficient exposures to probabilities and algorithms/optimization
 - Algorithms (CMSC 27200/27220 or equivalent)
 - Linear algebra (CMSC 25300 or equivalent)
 - Probability (STATS 25100 or equivalent).

If not sure, consult with the instructor. Note that no background on learning theory is required.

Requirements and Grading

Part I (30%): 3~4 proof-based assignments

- Part II (45%): course project. Instructions will be posted on website later.
 - Team up: up to 3 people per team
 - Make progress on a *research question* or *reproducing proofs* of existing papers, or a mixture
 - Deliverables: a presentation + a technical report in PDF
 - Grading is based on novelty + non-triviality
- Part III (25%): 3 in-class 30-mins quizzes
 - Not meant to be challenging
 - Just to check whether you are on top of key materials

Notes on Relevant Materials

- There are courses (and blogs) online that overlap with materials of this course
- These are great resources for extra reading, but it is still very useful for you to follow lectures as closely as you can because
 - Different instructors interpret the same knowledge differently
 - This will shape your *way of thinking* differently, which we think are the most valuable thing to learn from a course

If you have any suggestions/comments/concerns, feel free to email us.

19

Outline

- Course Overview
- > Administrivia
- ➤The First Problem

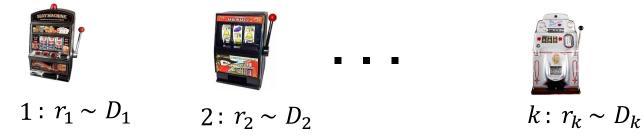
- Named after a gambling game
- > A foundational RL problem with a simple and elegant formulation

Amazon.com Pachi paradICE One...

M Medium

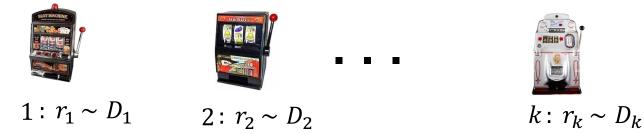
R⁶ ResearchGate The Multi-Armed Ba... 1: The multi-armed band

Formulation of the Multi-Armed Bandits (MAB)



- > A set of k arms, denoted as $[k] = \{1, 2, \dots, k\}$
- > Pulling arm *i* once generates a random reward r_i drawn from distribution D_i
 - Useful notations: let $\mu_i = \mathbb{E}[R_i]$ and $\mu^* = \max_{i \in [k]} \mu_i$
- As the algorithm designer, you decide which arm to pull to maximize your expected reward
 - This question is often asked in a "limited horizon" setting where you are allowed to play for *T* rounds
 - Assume 0 cost of pulling, which is without loss

Formulation of the Multi-Armed Bandits (MAB)



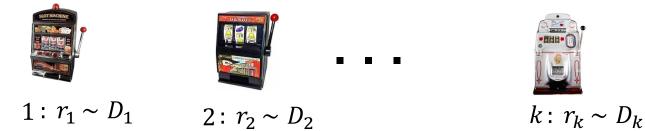
- > A set of k arms, denoted as $[k] = \{1, 2, \dots, k\}$
- > Pulling arm *i* once generates a random reward r_i drawn from distribution D_i

• Useful notations: let $\mu_i = \mathbb{E}[R_i]$ and $\mu^* = \max_{i \in [k]} \mu_i$

As the algorithm designer, you decide which arm to pull to maximize your expected reward

Round12
$$t$$
 T Goal:Solution of the second state i^1 i^2 i^t i^T $\max_{i^1, \dots, i^T} \mathbb{E}[\sum_{t=1}^T r_{i^t}]$

Formulation of the Multi-Armed Bandits (MAB)

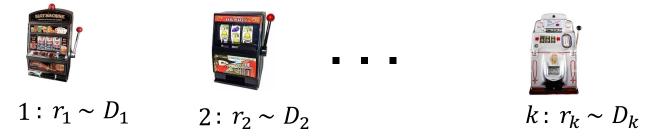


Question: if you know D_i (or even just $\mu_i = \mathbb{E}[R_i]$), what would be your optimal strategy?

Ans: always pull the $i^* = \arg \max_{i \in [k]} \mu_i$, with expected reward μ^* \downarrow This achieves maximum possible expected reward $T\mu^*$

Round	1	2 •••	• <i>t</i> • • •	T	Goal:
ریجی Algorithm's	i ¹	<i>i</i> ²	i ^t	i^T	$\max_{i^1, \cdots, i^T} \mathbb{E}\left[\sum_{t=1}^T r_{i^t}\right]$

Formulation of the Multi-Armed Bandits (MAB)



- > Challenges arise when we do not know μ_i 's, and need to learn from samples of D_i
- This leads to formulation of the MAB problem

Stochastic Multi-Armed Bandit (MAB)

Without knowing $\{\mu_i, D_i\}_{i=1}^k$, design a strategy/policy that chooses an arm sequence i^1, i^2, \dots, i^T to maximize $\mathbb{E}\left[\sum_{t=1}^T R_i^t\right]$

Why this is a learning problem?

> Do not know μ_i 's in advance, hence need to learn them

Why this is not *just* a learning problem?

- > Likely we need to learn μ_i 's to some extent, but that's not final goal
- > It is possible to achieve very high reward without needing to learn every μ_i well
- Btw, this makes a lot of sense in real life we find effective ways to do things with needing to failing a lot at every other alternative

Stochastic Multi-Armed Bandit (MAB)

Without knowing $\{\mu_i, D_i\}_{i=1}^k$, design a strategy/policy that chooses an arm sequence i^1, i^2, \dots, i^T to maximize $\mathbb{E}\left[\sum_{t=1}^T R_i^t\right]$

Measuring Learning Performance

Stochastic Multi-Armed Bandit (MAB)

Without knowing $\{\mu_i, D_i\}_{i=1}^k$, design a strategy/policy that chooses an arm sequence i^1, i^2, \dots, i^T to maximize $\mathbb{E}\left[\sum_{t=1}^T R_i t\right]$

Q: how to measure performance, or how well an algorithm did?

- > A natural first thought would be to calculate achieve rewards $\mathbb{E}\left[\sum_{t=1}^{T} R_{i^{t}}\right]$
- > In online learning, it is more conventional to measure its slight variant

$$\frac{\text{Regret} = T\mu^*}{\swarrow} - \mathbb{E}\left[\sum_{t=1}^T R_i^t\right]$$

Best possible award in hindsight (i.e., with perfect knowledge so no need to learn)

Measuring Learning Performance

Stochastic Multi-Armed Bandit (MAB)

Without knowing $\{\mu_i, D_i\}_{i=1}^k$, design a strategy/policy that chooses an arm sequence i^1, i^2, \dots, i^T to maximize $\mathbb{E}[\sum_{t=1}^T R_i t]$

Q: how to measure performance, or how well an algorithm did?

- > A natural first thought would be to calculate achieve rewards $\mathbb{E}\left[\sum_{t=1}^{T} R_{i^{t}}\right]$
- > In online learning, it is more conventional to measure its slight variant

Regret =
$$T\mu^* - \mathbb{E}\left[\sum_{t=1}^T R_{i^t}\right]$$

- Goal is to minimize regret
 - equivalent to maximize $\mathbb{E}\left[\sum_{t=1}^{T} R_{i^{t}}\right]$, but analytically more convenient

A Little History of MAB

Stochastic Multi-Armed Bandit (MAB)

Without knowing $\{\mu_i, D_i\}_{i=1}^k$, design a strategy/policy that chooses an arm sequence i^1, i^2, \dots, i^T to maximize $\mathbb{E}\left[\sum_{t=1}^T R_i^t\right]$

- This is a very clean and elegant problem
- Despite "bandit" in its name, MAB was initially motivated by designing reward-maximizing clinic trials, where an arm = a medical treatment
 - Started by William R. Thompson in 1930s whose designed the first algorithm for MAB, now called "Thompson Sampling"
- Extensively studied in the past two decades, due to being the cornerstone of reinforcement learning
 - Many design principles for MAB naturally generalize to RL
- > Has really a lot of applications, even in many of today's real systems

Next: Concentration Inequalities Very useful technical lemmas for later lectures

- In many real decision-making problems, we only receive random rewards, but optimal decisions depends on underlying expected reward
 - MAB is such an example; so is buying stocks
- Samples' average (also called empirical mean) is a good proxy of true mean, but not always accurate → there is risk (i.e., chance that true mean is actually very different from empirical mean)
- Intuitively, the more samples, typically the closer empirical mean is to true mean (thus less risk)

- In many real decision-making problems, we only receive random rewards, but optimal decisions depends on underlying expected reward
 - MAB is such an example; so is buying stocks
- ➤ Samples' average (also called empirical mean) is a good proxy of true mean, but not always accurate → there is risk (i.e., chance that true mean is actually very different from empirical mean)
- Intuitively, the more samples, typically the closer empirical mean is to true mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Intuitively, the more samples, typically the closer empirical mean is to true mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Intuitively, the more samples, typically the closer empirical mean is to true mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Intuitively, the more samples, typically the closer empirical mean is to true mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Remark: the dependence on *t*, *n* are tight order-wise!

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Three important insights from the theorem

1. The role of *n* (#samples): gap between empirical mean and true mean decays at $1/\sqrt{n}$ speed

Equivalently: sum of *n* independent random samples will be off from sum of their means roughly by \sqrt{n} (ignoring effects of $t, \log t$)

$$\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \leq \sqrt{\frac{\log t}{n}} \Leftrightarrow \left|\sum_{i=1}^{n} r_{i} - \sum_{i=1}^{n} \mu_{i}\right| \leq \sqrt{n \cdot \log t}$$

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Three important insights from the theorem

- 1. The role of *n* (#samples): gap between empirical mean and true mean decays at $1/\sqrt{n}$ speed
 - Why should you should be amazed by this conclusion?
 - Intuitively, if each sample is off from mean by a small constant ϵ_i , then naively we expect $\sum_{i=1}^{n} \epsilon_i \approx \epsilon n$
 - This much sharper \sqrt{n} bound is because summing up independent randomness hedges out uncertainties/risk, exactly at rate $\Theta(\sqrt{n})$
 - Mathematical reason: central limit theorem

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Three important insights from the theorem

2. Risk probability δ : gap between empirical mean and true mean amplifies at $\sqrt{\log(1/\delta)}$ speed as risk decreases

- Hence reducing probability of "bad" event has low cost
 - For example, reducing from $\delta = t^{-1}$ to $\delta = t^{-2}$, the $\log 1/\delta$ term changes from $\sqrt{\log t}$ to $\sqrt{2\log t}$
 - We will heavily rely on this property in algorithm design since it makes high probability guarantees "low cost"

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Three important insights from the theorem

3. r_i 's do not need to be from the same distribution – only independence and boundedness are needed

Corollary: for the special case when D_i 's are the same, with mean μ , we say r_i 's are *independent and identically distributed* (I.I.D.), and we have $\Pr\left(|\bar{\mu} - \mu| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$

39

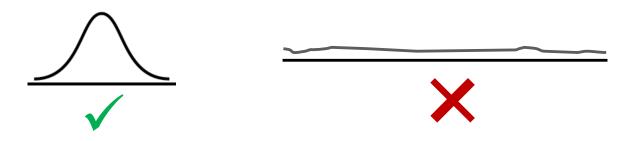
Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Three important insights from the theorem

3. r_i 's do not need to be from the same distribution – only independence and boundedness are needed

Boundedness can be easily generalized -- what is intrinsic is that distributions cannot be too spread out (i.e., having "heavy tails")



Generalized Versions

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Theorem (Generalization 1): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on $[a_i, b_i]$, with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_i}{n} - \frac{\sum_{i=1}^{n} \mu_i}{n}\right| \le \frac{\sqrt{\log 1/\delta \times \sum_{i=1}^{n} (b_i - a_i)^2}}{n}\right) \ge 1 - 2\delta$$

Generalized Versions

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

Theorem (Generalization 2): For $i = 1, \dots, n$, let r_i be a sample drawn independently from σ_i -sub-Gaussian distribution D_i with mean μ_i . Then

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \frac{\sqrt{\log 1/\delta \times \sum_{i=1}^{n} (\sigma_{i})^{2}}}{n}\right) \ge 1 - 2\delta$$

Intuitively, distribution X is σ-sub-Gaussian if its "spreadness" is upper bounded by a variance-σ Gaussian, up to a constant; formally $Pr(|X - \mu_X| \ge t) \le c \exp(t^2/\sigma^2)$, ∀t

Generalized Versions

Theorem (Hoeffding's inequality): For $i = 1, \dots, n$, let r_i be a sample drawn independently from a bounded distribution D_i supported on [0, 1], with mean μ_i . Then we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n}\right| \le \sqrt{\frac{\log 1/\delta}{n}}\right) \ge 1 - 2\delta$$

One-sided version

Theorem (Generalization 3): For $i = 1, \dots, n$, let r_i be a sample drawn independently from σ_i -sub-Gaussian distribution D_i , with mean μ_i . Then

$$\Pr\left(\frac{\sum_{i=1}^{n} r_{i}}{n} - \frac{\sum_{i=1}^{n} \mu_{i}}{n} \ge \frac{\sqrt{\log 1/\delta \times \sum_{i=1}^{n} (\sigma_{i})^{2}}}{n}\right) \le \delta$$

- Symmetric side also holds
- Together imply the original version

Generalizing from Independence to Martingale

- > It turns out that independence among r_i can also be (slightly) relaxed
- A famous/useful generalization is for Martingale

Definition: A sequence of random variables X_1, X_2, \cdots is called a *martingale difference sequence* with respect to another sequence $R_1, R_2 \cdots$ if for any t, random var X_{t+1} is a function of R_1, \cdots, R_t , and $\mathbb{E}(X_{t+1}|R_1, \cdots, R_t) = 1$ with probability 1.

Theorem (Azuma-Hoeffding inequality): Let X_1, X_2, \cdots be a martingale difference sequence w.r.t. $R_1, R_2 \cdots$. Moreover, for any realized r_1, \cdots, r_t sequence, $X_{t+1}(r_1, \cdots, r_t)$ satisfies (i.e., is σ -subgaussian)

$$\Pr(|X_{t+1}| \ge t) \le c \exp(t^2/\sigma^2), \forall t$$

Then, we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} x_i}{n}\right| \le \sigma \sqrt{\frac{28c \log 1/\delta}{n}}\right) \le 1 - 2\delta$$

Generalizing from Independence to Martingale

- ➤ Intuitively, even when X_{t+1} depends on the past randomness from R_1, \dots, R_{t-1} , its sum still concentrates so long as its mean is the same under any realized r_1, \dots, r_{t-1} (and it is subgaussian)
- \succ Unsurprisingly, there is one-sided version as well.
 - For interested audience, refer to a 2-page note "<u>A Variant of Azuma's</u> <u>Inequality for Martingales with Subgaussian Tails</u>" for one-sided version
 - Citing author's note, "the numerical constant can be improved", though not important for the purpose of this course

Theorem (Azuma-Hoeffding inequality): Let X_1, X_2, \cdots be a martingale difference sequence w.r.t. $R_1, R_2 \cdots$. Moreover, for any realized r_1, \cdots, r_t sequence, $X_{t+1}(r_1, \cdots, r_t)$ satisfies (i.e., is σ -subgaussian)

$$\Pr(|X_{t+1}| \ge t) \le c \exp(t^2/\sigma^2), \forall t$$

Then, we have

$$\Pr\left(\left|\frac{\sum_{i=1}^{n} x_i}{n}\right| \le \sigma \sqrt{\frac{28c \log 1/\delta}{n}}\right) \le 1 - 2\delta$$

45

Remarks

Previous four versions are most common, but there are many other variants as well

- If variance/spreadness is nicely small, you can get possibly even sharper bound (e.g., Berstein's inequality)
- If spreadness (defined in subtle ways) cannot be upper bounded by a Gaussian, you can get weaker upper bounds

≻Main takeaways

- Independent randomness hedges out after being summed up together
- This generally holds true with roughly $\Theta(\sqrt{n})$ rate, and can be proved under various conditions

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>