
DATA 37200:  Learning, Decisions, and Limits
(Winter 2025)

Lecture 1: Intro and the First Problem

Instructor:  Haifeng Xu
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Ø Course Overview

Ø Administrivia

ØThe First Problem

Outline
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Recall: Classic Machine Learning Problems

Image recognition

Speech recognition Next token/word prediction
(for language models)

Preference learning for 
recommendations
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Recall: Classic Machine Learning Problems

Image recognition

Speech recognition Next token/word prediction
(for language models)

Preference learning for 
recommendations

These are recognition-based learning problems
Ø Task environments are usually static
Ø Often use supervised learning
Ø Relatively mature by now, and quite successful in both 

theory and applications
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This Course: Decision-Based Learning Tasks 

Ø Often use quite different design principles and learning techniques
• Will see in our first learning problem why new design ideas are necessary
• A well-known field studying this is reinforcement learning (RL), about 

which this course will cover a lot, though also beyond
• Problems are often more complex 

Ø Why more complex? To learn decisions, we have to consider many factors 
beyond just accuracy:
• Rewards/payoffs/costs/utilities
• Decision consequences – your learned decisions act on (hence change) 

the environments   
• Conflicting interests/incentives
• Societal issues: fairness, alignment, welfare-efficient…
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Why Important? 

Ø Core decision-based learning techniques are underlying many 
breakthrough research 

Deepmind’s Alpha series GPT-o1, even ChatGPT

learn to decide next move, how 
to search, how to find next 
reasoning step

learn to find next reasoning 
step, to align with human’s 
preferences/values/payoffs
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Why Important? 

Ø Core decision-based learning techniques are underlying many 
breakthrough research and billions$-scale industrial applications

Deepmind’s Alpha series GPT-o1, even ChatGPT

Product/content recommendation Dynamic pricing based on 
traffic/supply/demand prediction
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Why Important? 

Ø Core decision-based learning techniques are underlying many 
breakthrough research and billions$-scale industrial applications

Product/content recommendation Dynamic pricing based on 
traffic/supply/demand prediction

Challenge: demand/supply 
à price à changes 
demand/supplyRecommendation needs consider 

its action consequences 
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Why Important? 

Ø Core decision-based learning techniques are underlying many 
breakthrough research and billions$-scale industrial applications

Not to mention many data-driven policy/decision making 
problems in critical societal, health and security applications
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Wow, cool! So… after this course, will I become the hero to 
work towards Nobel, or solving Google’s/Amazon’s problems? 

Ø Not immediately…
• Those are not easy problems to solve 
• This is designed to be a foundational (theory-focused) course
• (Programming/implementation is also important, just not our focus)

Ø Goal of this course is to build your foundational understandings about
• What key factors to consider while learning optimal decisions
• Basic design principles of optimal learning algorithms
• What is possible, and what is not possible
• Along the way, also enrich your statistical and algorithmic toolkits 
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Learning Objectives

Ø Understand how to mathematically formulate and analyze models 
for interactive learning problems; learn how to apply core 
techniques from probability, statistics, optimization, etc.

Ø Understand key difficulties/challenges with solving RL problems

Ø Understand principles underlying relevant cutting-edge technologies, 
such as Reinforcement Learning from Human Feedback (RLHF) 
and AlphaGo training

Ø Be well-prepared to understand state-of-the-art papers about online 
learning, RL and data-driven decision making

Ø Have the foundations to work on relevant practical applications
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Tentative Topics of the Course 



13

Targeted Audience of This Course

Ø Anyone planning to do research in machine learning (theoretical or 
empirical), particularly with human factors involved

• The course is theory-focused, but we cover the very basics that even 
applied researcher should benefit from these basics

• Even you do not work on interactive decision learning, it is still useful to 
see how it interplay with bandits, decisions.  

Ø Anyone who wants to grasp the basics about how ML can be used for 
recommendation, preference alignment, dynamic pricing, etc.

Ø Anyone who want to see what other useful ML paradigms there are 
beyond supervised learning via large neural networks
• Offer you a more comprehensive view about machine learning
• Deep learning is super useful and powerful, but real industrial success 

also crucially hinges on other equally critical techniques
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Ø Course Overview

Ø Administrivia 

ØThe First Problem

Outline
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Basic Information

Ø Course time: Tue/Thu, 12:30–1:50 pm at JCL 011

Ø Lecture: in person (unless further instruction)

Ø Instructor: Frederic Koehler (fkoehler@uchicago.edu) and Haifeng 
Xu (haifengxu@uchicago.edu)
• Joint teaching due to new development
• Office Hour: Frederic (Tue 4:30-5:30 pm); Haifeng (Thur 4-5 pm)
• Can add more office hour, depending on demand

ØTAs
• Aditya Prasad; office hour: Wed 2-3 pm

ØCouse website: https://frkoehle.github.io/data37200-w2025/ 
• Easier way is to search our personal website and navigates to course

Ø References: linked papers/notes on website, no official textbooks 
• Slides will be posted after lectures

mailto:fkoehler@uchicago.edu
mailto:haifengxu@uchicago.edu
https://aditya-prasad.com/
https://frkoehle.github.io/data37200-w2025/
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Prerequisites 

Ø Mathematically mature: be comfortable with proofs 

Ø Sufficient exposures to probabilities and algorithms/optimization
• Algorithms (CMSC 27200/27220 or equivalent)
• Linear algebra (CMSC 25300 or equivalent)
• Probability (STATS 25100 or equivalent). 

ØIf not sure, consult with the instructor. Note that no background on 
learning theory is required.
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Requirements and Grading

ØPart I (30%): 3~4 proof-based assignments

ØPart II (45%): course project. Instructions will be posted on website 
later.
• Team up: up to 3 people per team
• Make progress on a research question or reproducing proofs of existing 

papers, or a mixture    
• Deliverables: a presentation + a technical report in PDF
• Grading is based on novelty + non-triviality

ØPart III (25%): 3 in-class 30-mins quizzes
• Not meant to be challenging
• Just to check whether you are on top of key materials
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Notes on Relevant Materials

Ø There are courses (and blogs) online that overlap with materials of 
this course

Ø These are great resources for extra reading, but it is still very useful 
for you to follow lectures as closely as you can because 

• Different instructors interpret the same knowledge differently 
• This will shape your way of thinking differently, which we think 

are the most valuable thing to learn from a course
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If you have any suggestions/comments/concerns, 
feel free to email us.
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Ø Course Overview

Ø Administrivia 

ØThe First Problem

Outline
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The Stochastic Multi-Armed Bandit Problem

Ø Named after a gambling game
Ø A foundational RL problem with a simple and elegant formulation
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The Stochastic Multi-Armed Bandit Problem

Formulation of the Multi-Armed Bandits (MAB)

. . . 

Ø A set of 𝑘 arms, denoted as 𝑘 = {1,2,⋯ , 𝑘} 
Ø Pulling arm 𝑖 once generates a random reward 𝑟! drawn from 

distribution 𝐷! 
• Useful notations: let 𝜇! = 𝔼[𝑅!] and 𝜇∗ = max

!∈[%]
𝜇!

Ø As the algorithm designer, you decide which arm to pull to maximize 
your expected reward

• This question is often asked in a “limited horizon” setting where 
you are allowed to play for 𝑇 rounds

• Assume 0 cost of pulling, which is without loss  

1 2 𝑘: 	𝑟'∼ 𝐷' : 	𝑟(∼ 𝐷( : 	𝑟% ∼ 𝐷% 
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The Stochastic Multi-Armed Bandit Problem

Formulation of the Multi-Armed Bandits (MAB)

. . . 

Ø A set of 𝑘 arms, denoted as 𝑘 = {1,2,⋯ , 𝑘} 
Ø Pulling arm 𝑖 once generates a random reward 𝑟! drawn from 

distribution 𝐷! 
• Useful notations: let 𝜇! = 𝔼[𝑅!] and 𝜇∗ = max

!∈[%]
𝜇!

Ø As the algorithm designer, you decide which arm to pull to maximize 
your expected reward

1 2 𝑘: 	𝑟'∼ 𝐷' : 	𝑟(∼ 𝐷( : 	𝑟% ∼ 𝐷% 

Round 1

Algorithm’s 
choice 𝑖'

2

𝑖(

. . . 𝑡

𝑖)

. . . 𝑇

𝑖*
Goal: 
max
!!,⋯,!"

𝔼[	∑$%&' 𝑟!#] 
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The Stochastic Multi-Armed Bandit Problem

Formulation of the Multi-Armed Bandits (MAB)

. . . 
1 2 𝑘: 	𝑟'∼ 𝐷' : 	𝑟(∼ 𝐷( : 	𝑟% ∼ 𝐷% 

Round 1

Algorithm’s 
choice

2 . . . 𝑡 . . . 𝑇

Question: if you know 𝐷! (or even just 𝜇! = 𝔼[𝑅!]), what would 
be your optimal strategy?

Ans: always pull the 𝑖∗ = argmax
!∈[+]

𝜇!, with expected reward 𝜇∗ 
This achieves maximum possible expected reward 𝑇𝜇∗👍

𝑖' 𝑖( 𝑖) 𝑖*
Goal: 
max
!!,⋯,!"

𝔼[	∑$%&' 𝑟!#] 
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The Stochastic Multi-Armed Bandit Problem

Formulation of the Multi-Armed Bandits (MAB)

. . . 
1 2 𝑘: 	𝑟'∼ 𝐷' : 	𝑟(∼ 𝐷( : 	𝑟% ∼ 𝐷% 

Ø Challenges arise when we do not know 𝜇! ’s, and need to learn 
from samples of 𝐷!

Ø This leads to formulation of the MAB problem

Stochastic Multi-Armed Bandit (MAB)

Without knowing 𝜇! , 𝐷! !%&
+ , design a strategy/policy that chooses 

an arm sequence 𝑖&, 𝑖-, ⋯ , 𝑖' to maximize 𝔼[	∑$%&' 𝑅!#]
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The Stochastic Multi-Armed Bandit Problem

Why this is a learning problem? 
Ø Do not know 𝜇! ’s in advance, hence need to learn them 

Why this is not just a learning problem? 
Ø Likely we need to learn 𝜇! ’s to some extent, but that’s not final goal

Ø It is possible to achieve very high reward without needing to learn 
every 𝜇! well

Ø Btw, this makes a lot of sense in real life – we find effective ways to 
do things with needing to failing a lot at every other alternative

Stochastic Multi-Armed Bandit (MAB)

Without knowing 𝜇! , 𝐷! !%&
+ , design a strategy/policy that chooses 

an arm sequence 𝑖&, 𝑖-, ⋯ , 𝑖' to maximize 𝔼[	∑$%&' 𝑅!#]
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Measuring Learning Performance

Ø A natural first thought would be to calculate achieve rewards 𝔼[	∑)+'* 𝑅!!] 

Ø In online learning, it is more conventional to measure its slight variant

Q: how to measure performance, or how well an algorithm did?

Regret = 𝑇𝜇∗ 	 − 	𝔼[	∑)+'* 𝑅!!] 

Best possible award in hindsight 
(i.e., with perfect knowledge so 
no need to learn)

Stochastic Multi-Armed Bandit (MAB)

Without knowing 𝜇! , 𝐷! !%&
+ , design a strategy/policy that chooses 

an arm sequence 𝑖&, 𝑖-, ⋯ , 𝑖' to maximize 𝔼[	∑$%&' 𝑅!#]
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Measuring Learning Performance

Ø A natural first thought would be to calculate achieve rewards 𝔼[	∑)+'* 𝑅!!] 

Ø In online learning, it is more conventional to measure its slight variant

Stochastic Multi-Armed Bandit (MAB)

Without knowing 𝜇! , 𝐷! !%&
+ , design a strategy/policy that chooses 

an arm sequence 𝑖&, 𝑖-, ⋯ , 𝑖' to maximize 𝔼[	∑$%&' 𝑅!#]

Ø Goal is to minimize regret

Regret = 𝑇𝜇∗ 	 − 	𝔼[	∑)+'* 𝑅!!] 

• equivalent to maximize 𝔼[	∑)+'* 𝑅!!], but analytically more convenient

Q: how to measure performance, or how well an algorithm did?
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A Little History of MAB

Ø This is a very clean and elegant problem

Ø Despite ”bandit” in its name, MAB was initially motivated by designing 
reward-maximizing clinic trials, where an arm = a medical treatment
• Started by William R. Thompson in 1930s whose designed the first 

algorithm for MAB, now called “Thompson Sampling”

Ø Extensively studied in the past two decades, due to being the cornerstone of 
reinforcement learning
• Many design principles for MAB naturally generalize to RL

Ø Has really a lot of applications, even in many of today’s real systems

Stochastic Multi-Armed Bandit (MAB)

Without knowing 𝜇! , 𝐷! !%&
+ , design a strategy/policy that chooses 

an arm sequence 𝑖&, 𝑖-, ⋯ , 𝑖' to maximize 𝔼[	∑$%&' 𝑅!#]
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Next:  Concentration Inequalities 

Very useful technical lemmas for later lectures
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Balancing Reward and Risk is Crucial in Decisions

Ø In many real decision-making problems, we only receive random rewards, 
but optimal decisions depends on underlying expected reward
• MAB is such an example; so is buying stocks

Ø Samples’ average (also called empirical mean) is a good proxy of true mean, 
but not always accurate à there is risk (i.e., chance that true mean is 
actually very different from empirical mean)

Ø Intuitively, the more samples, typically the closer empirical mean is to true 
mean (thus less risk)
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Balancing Reward and Risk is Crucial in Decisions

Ø In many real decision-making problems, we only receive random rewards, 
but optimal decisions depends on underlying expected reward
• MAB is such an example; so is buying stocks

Ø Samples’ average (also called empirical mean) is a good proxy of true mean, 
but not always accurate à there is risk (i.e., chance that true mean is 
actually very different from empirical mean)

Ø Intuitively, the more samples, typically the closer empirical mean is to true 
mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!



33

Balancing Reward and Risk is Crucial in Decisions

Ø In many real decision-making problems, we only receive random rewards, 
but optimal decisions depends on underlying expected reward
• MAB is such an example; so is buying stocks

Ø Samples’ average (also called empirical mean) is a good proxy of true mean, 
but not always accurate and there is risk (i.e., chance that true mean is 
actually very different from empirical mean)

Ø Intuitively, the more samples, typically the closer empirical mean is to true 
mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 − 2𝛿
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Balancing Reward and Risk is Crucial in Decisions

Ø In many real decision-making problems, we only receive random rewards, 
but optimal decisions depends on underlying expected reward
• MAB is such an example; so is buying stocks

Ø Samples’ average (also called empirical mean) is a good proxy of true mean, 
but not always accurate and there is risk (i.e., chance that true mean is 
actually very different from empirical mean)

Ø Intuitively, the more samples, typically the closer empirical mean is to true 
mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 − 2𝛿
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Balancing Reward and Risk is Crucial in Decisions

Ø In many real decision-making problems, we only receive random rewards, 
but optimal decisions depends on underlying expected reward
• MAB is such an example; so is buying stocks

Ø Samples’ average (also called empirical mean) is a good proxy of true mean, 
but not always accurate and there is risk (i.e., chance that true mean is 
actually very different from empirical mean)

Ø Intuitively, the more samples, typically the closer empirical mean is to true 
mean (thus less risk)

We want a rigorous quantitative statement for the above intuition!

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 − 2𝛿

Remark: the dependence on 𝑡, 𝑛 are tight order-wise!
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Balancing Reward and Risk is Crucial in Decisions

Three important insights from the theorem
1. The role of 𝒏 (#samples): gap between empirical mean and true mean 

decays at 1/ 𝑛 speed  

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 − 2𝛿

∑!+'
, 𝑟!
𝑛

	−
∑!+'
, 𝜇!
𝑛

≤
log 𝑡
𝑛

	⇔ K
!+'

,

𝑟! −K
!+'

,

𝜇! ≤ 𝑛 ⋅ log 𝑡

Equivalently: sum of 𝑛 independent random samples will be off from 
sum of their means roughly by 𝑛 (ignoring effects of 𝑡, log 𝑡) 
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Balancing Reward and Risk is Crucial in Decisions

Three important insights from the theorem
1. The role of 𝒏	(#samples): gap between empirical mean and true mean 

decays at 1/ 𝑛 speed  

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 − 2𝛿

Ø Why should you should be amazed by this conclusion?  
• Intuitively, if each sample is off from mean by a small constant 
𝜖!, then naively we expect ∑!+', 𝜖! ≈ 𝜖𝑛  

• This much sharper 𝑛 bound is because summing up independent 
randomness hedges out uncertainties/risk, exactly at rate Θ( 𝑛)  

• Mathematical reason: central limit theorem
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Balancing Reward and Risk is Crucial in Decisions

Three important insights from the theorem
2. Risk probability 𝜹: gap between empirical mean and true mean amplifies 
at log(1/𝛿) speed as risk decreases

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 −2𝛿

Ø Hence reducing probability of “bad” event has low cost 
• For example, reducing from 𝛿 = 𝑡-' to 𝛿 = 𝑡-(, the log 1/𝛿 term 

changes from log 𝑡	to 2log 𝑡
• We will heavily rely on this property in algorithm design since it 

makes high probability guarantees “low cost”
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Balancing Reward and Risk is Crucial in Decisions

Three important insights from the theorem
3. 𝑟! ’s do not need to be from the same distribution – only independence and 
boundedness are needed

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 −2𝛿

Corollary: for the special case when 𝐷! ’s are the same, with mean 𝜇, we 
say 𝑟! ’s are independent and identically distributed (I.I.D.), and we have

Pr 𝜇̅ 	− 𝜇 ≤
log 1/𝛿
𝑛

≥ 1 −2𝛿
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Balancing Reward and Risk is Crucial in Decisions

Three important insights from the theorem
3. 𝑟! ’s do not need to be from the same distribution – only independence and 
boundedness are needed

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 −2𝛿

Ø Boundedness can be easily generalized -- what is intrinsic is that 
distributions cannot be too spread out (i.e., having “heavy tails”)  

ü
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Generalized Versions 
Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 −2𝛿

Theorem (Generalization 1): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample drawn 
independently from a bounded distribution 𝐷! supported on [𝑎! , 𝑏!], with 
mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿 ×∑!+'

, 𝑏! − 𝑎! (

𝑛
≥ 1 −2𝛿
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Generalized Versions 

Theorem (Generalization 2): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample drawn 
independently from 𝜎!-sub-Gaussian distribution 𝐷! with mean 𝜇!. Then

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿 ×∑!+', 𝜎! (	

𝑛
≥ 1 −2𝛿

Ø Intuitively, distribution 𝑋 is 𝜎-sub-Gaussian if its “spreadness” is upper 
bounded by a variance-𝜎 Gaussian, up to a constant; formally

Pr 𝑋 − 𝜇. ≥ 𝑡 ≤ 𝑐 exp(𝑡(/𝜎() , ∀𝑡

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 −2𝛿
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Generalized Versions 

Theorem (Generalization 3): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample drawn 
independently from 𝜎!-sub-Gaussian distribution 𝐷!, with mean 𝜇!. Then 

Pr
∑!+'
, 𝑟!
𝑛

	−
∑!+'
, 𝜇!
𝑛

≥
log 1/𝛿 ×∑!+'

, 𝜎! (	
𝑛

≤ 𝛿

Theorem (Hoeffding's inequality): For 𝑖 = 1,⋯ , 𝑛, let 𝑟! be a sample 
drawn independently from a bounded distribution 𝐷! supported on 
[0, 1], with mean 𝜇!. Then we have 

Pr
∑!+', 𝑟!
𝑛

	−
∑!+', 𝜇!
𝑛

≤
log 1/𝛿
𝑛

≥ 1 −2𝛿

One-sided version

Ø Symmetric side also holds
Ø Together imply the original version 
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Generalizing from Independence to Martingale

Theorem (Azuma-Hoeffding inequality): Let 𝑋', 𝑋(, ⋯ be a martingale 
difference sequence w.r.t. 𝑅', 𝑅(⋯	. Moreover, for any realized 𝑟', ⋯ , 𝑟) 
sequence, 𝑋)/'(𝑟', ⋯ , 𝑟)) satisfies (i.e., is 𝜎-subgaussian)

Pr 𝑋)/' ≥ 𝑡 ≤ 𝑐 exp(𝑡(/𝜎() , ∀𝑡
 Then, we have 

	Pr
∑!+'
, 𝑥!
𝑛

≤ 𝜎
28𝑐 log 1/𝛿

𝑛
≤1 − 2𝛿

Ø It turns out that independence among 𝑟! can also be (slightly) relaxed
Ø A famous/useful generalization is for Martingale

Definition: A sequence of random variables 𝑋', 𝑋(, ⋯ is called a 
martingale difference sequence with respect to another sequence 
𝑅', 𝑅(⋯ if for any 𝑡, random var 𝑋)/' is a function of 𝑅', ⋯ , 𝑅), and   

𝔼 𝑋)/' 𝑅', ⋯ , 𝑅) = 1        with probability 1.
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Generalizing from Independence to Martingale

Ø Intuitively, even when 𝑋)/' depends on the past randomness from 
𝑅', ⋯ , 𝑅)-', its sum still concentrates so long as its mean is the 
same under any realized 𝑟', ⋯ , 𝑟)-' (and it is subgaussian)

Ø Unsurprisingly, there is one-sided version as well.
• For interested audience, refer to a 2-page note “A Variant of Azuma’s 

Inequality for Martingales with Subgaussian Tails” for one-sided version
• Citing author’s note, “the numerical constant can be improved”, though 

not important for the purpose of this course

Theorem (Azuma-Hoeffding inequality): Let 𝑋', 𝑋(, ⋯ be a martingale 
difference sequence w.r.t. 𝑅', 𝑅(⋯	. Moreover, for any realized 𝑟', ⋯ , 𝑟) 
sequence, 𝑋)/'(𝑟', ⋯ , 𝑟)) satisfies (i.e., is 𝜎-subgaussian)

Pr 𝑋)/' ≥ 𝑡 ≤ 𝑐 exp(𝑡(/𝜎() , ∀𝑡
 Then, we have 

	Pr
∑!+'
, 𝑥!
𝑛

≤ 𝜎
28𝑐 log 1/𝛿

𝑛
≤1 − 2𝛿

https://arxiv.org/pdf/1110.2392
https://arxiv.org/pdf/1110.2392
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Remarks

ØPrevious four versions are most common, but there are many 
other variants as well
• If variance/spreadness is nicely small, you can get possibly even 

sharper bound (e.g., Berstein’s inequality)
• If spreadness (defined in subtle ways) cannot be upper bounded by a 

Gaussian, you can get weaker upper bounds  

ØMain takeaways 
• Independent randomness hedges out after being summed up together 
• This generally holds true with roughly Θ( 𝑛) rate, and can be proved 

under various conditions
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