Infro to RL+MDPs - HWZ should be out tonight. Hattenn is around. What is a "finite horizon H episodic Markov Decision Process ?? H=1 (oughly contextual bandit

What is such an MDP? H=horizon S = { Set of States } (S) = { set of prob-Gility A= Z set of actions Z distibutions OVUSP Timesteps h=1 to H. $P_h: S_X A \rightarrow \Delta(S)$ $R_h: S_X A \longrightarrow \Delta(R)$ ol, EA(S) distribution over initial states.

How do we play a single episode of the MDP? User Selects a policy $\mathcal{T}=\left(\mathcal{T}_{1},\ldots,\mathcal{T}_{|\mathcal{T}|}\right)$ $\mathcal{T}_{h}: S \longrightarrow A(A)$ Xfron 1 to H, Sind, Sind, We select action $a_1 n \pi_1(s_1)$) for h=2 told. We select action $a_1 n \pi_1(s_1)$) for h=2 told. $a_h n \pi_h(s_h)$ $f_h n = h(s_h, a_h)$ $S_2 n P_1(s_1, a_1)$) $f_h n = h(s_h, a_h)$ $S_2 n P_1(s_1, a_1)$) $S_{h+1} n P_h(s_h, a_h)$ Then:

Total reward in our apisode is Sin Play episodes t=1,...,T. For tel to Ta - User selects a policy Tt based off post equince. - Placy policy Tt in the MDP. - Gain reward Zrit in the MDP. - Gain reward Zrit Goali maximize this.) Total Reward = Zrit (goali maximize this.) Total Reward = Eliment of Tt] Regret = Our total Reward - Eliment of Tt] best policy

What is the best T*? A(π) = E reward under policy π. = E Z rn (in one goisode) π. = E Z rn $\int \frac{S_{1} - d_{1}}{f_{ac} h = [f_{o}tf:}$ $a_{h} - \pi_{h}(s_{h})$ $F_{h} - R_{h}(s_{h}, a_{h})$ $S_{h+1} - P_{h}(s_{h}, a_{h})$ $\pi^{*} = \operatorname{argmin}_{\pi} f(\pi).$ ~ Online RL' Remark: Getting o(T) Tegtet Finding a nearly optional policy. "PAC-RL"

Next: Bellman equations/ Pyramic Programming $h:1 \quad h:2$ $\lambda : H$ SI RIA Def Value function value policy π $V_h^{T}(s) = \underset{T}{\text{E}} \begin{bmatrix} z & r_e \\ z & h \end{bmatrix} s_h = s \end{bmatrix}$ Q-function value policy π $Q_h^{T}(s,a) = \underset{T}{\text{E}} \begin{bmatrix} z & v_e \\ z & h \end{bmatrix} s_h = s_p a_h = a \end{bmatrix}$

Def: $V_{h}^{\mathcal{K}}(s) = V_{h}^{\mathcal{K}}(s)$ $Q_h^{*}(s,a) = Q_h^{\pi}(s,a).$ $Q_{H}^{*}(s,a) = \mathbb{E}\left[\Gamma_{H} \left[S_{H}^{s} S_{H}^{s} \right] \right]$ $V_{H}^{K}(s) = \underset{T^{*}}{\mathbb{E}} \left[\left| r_{H} \right| s_{H} = s \right]$ = $\max_{a} \mathbb{E} \left[\left| r_{H} \right| s_{H} = s, a_{H} = a \right]$ = $\max_{a} Q_{H}^{K}(s,a).$

 $\pi_h^{*}(s) = asgmax Q_h^{*}(s,a)$ $V_h^{*}(s) = \max_{A} Q_h(s,a)$ $\mathcal{O}_{h}^{\star}(s, \alpha) = \mathbb{E}\left[\sum_{\substack{p=h\\ p=h}}^{H} r_{e}\left[s_{h}^{-s}, a_{h}^{-\alpha}\right]\right]$ = E [V_h+(S_h+i)(S_h=S_iA_h=a) +r_h [S_h=S_iA_h=a]

Agranic Programming algorithm to compute T(, U, and Q*: ("Value iteration") $Q_H^{*}(s,a) = \mathbb{E}\left[V_H \mid S_H = S, q_H = a\right]$ $\left(\left(\right) \right)$ $V_{H}^{\star}(s): \max_{a} Q_{H}^{\star}(s_{a})$ $\pi_{H}^{*}(S) : \alpha_{IG}^{*}(S, \alpha)$ Use Bellman equations to define QH-1, VK AM-1 Then diff-2, U*+1-2, Ti +/-2, ... Q1, V1, TI.

D'Failure of naive exploration. Mit half postod rH=1 if D'Africalty of large state spaces. you plaged 00/10011 (or some other final straj So SI S2 \$0...03 P 53 5 13 05 103 -13 21 13 Requires 2^H×151 Many plags to get Newsid with A. 13C

