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➢ Course Topics

1. Multi-agent Learning

2. Reinforcement learning from human feedback (RLHF) 

➢  Logistics: one more HW (likely out by this weekend) 

and one more quiz (next Thur)

Plans for Remainder of the Course



DATA 37200:  Learning, Decisions, and Limits

(Winter 2025)

Basics of Game Theory and Multi-agent Learning

Instructor:  Haifeng Xu
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➢ Game Theory and Nash Equilibrium

➢Zero-Sum Games: theory and learning

Outline
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What is Game Theory About?

➢Consequences of our decisions are often affected by others

• Buying a house

• Choose stocks to invest

• Applying to universities

• …

➢ Game theory offers a framework to reason about 

decisions in such multi-agent situations  
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What is Game Theory About?

➢Consequences of our decisions are often affected by others

• Buying a house

• Choose stocks to invest

• Applying to universities

• …

➢ Game theory offers a framework to reason about 

decisions in such multi-agent situations  

➢ It has deep connections to AI

• For a long period, RL research was primarily 

motivated by solving games (e.g. checkers, 

chess, go, poker, etc.)

• In fact, a key founder of AI John von 
Neumann is a founder of game theory
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Example I: Prisoner’s Dilemma

➢ Two members A,B of a criminal gang are arrested

➢ They are questioned in two separate rooms

❖ No communications between them

➢ Betray is always the best action

Q: How should each prisoner act?
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Example I: Prisoner’s Dilemma

➢ Two members A,B of a criminal gang are arrested

➢ They are questioned in two separate rooms

❖ No communications between them

➢ Betray is always the best action

➢ But, (-1,-1) is a better outcome 

for both

➢ Why? What goes wrong?

• Selfish behaviors lead to 

inefficient outcome

Q: How should each prisoner act?

equilibrium
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Example 2: Rock-Paper-Scissor

Q: what is an equilibrium?

➢ Need to randomize – any deterministic action pair cannot 

make both players happy

➢ Common sense suggests (1/3,1/3,1/3) 

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

Player 1

Player 2
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Main Components of a Game

➢ Players: participants of the game, each may be an individual, 
organization, a machine or an algorithm, etc. 

➢ Strategies: actions available to each player 

➢ Outcome: the profile of player strategies

➢ Payoffs: a function mapping an outcome to a utility for each player
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Normal-Form Representation

➢ 𝑛 players, denoted by set 𝑛 = {1, ⋯ , 𝑛}

➢ Player 𝑖 takes action 𝑎𝑖 ∈ 𝐴𝑖 

➢ An outcome is the action profile 𝑎 = (𝑎1, ⋯ , 𝑎𝑛)
• As a convention, 𝑎−𝑖 = (𝑎1, ⋯ , 𝑎𝑖−1, 𝑎𝑖+1, ⋯ , 𝑎𝑛) denotes all actions 

excluding 𝑎𝑖

➢Player 𝑖 receives payoff 𝑢𝑖(𝑎) for any outcome 𝑎 ∈ Π𝑖=1
𝑛 𝐴𝑖

• 𝑢𝑖 𝑎 = 𝑢𝑖(𝑎𝑖, 𝑎−𝑖) depends on other players’ actions

➢ 𝐴𝑖 , 𝑢𝑖 𝑖∈[𝑛] are public knowledge

This is the most basic game model

➢ There are game models with richer and more intricate structures
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Illustration: Prisoner’s Dilemma 

➢ 2 players: 1 and 2

➢𝐴𝑖 = {silent, betray} for 𝑖 = 1,2

➢An outcome can be, e.g., 𝑎 = (silent, silent)

➢ 𝑢1 𝑎 , 𝑢2(𝑎) are pre-defined, e.g., 𝑢1 silent, silent = −1

➢The whole game is public knowledge; players take actions 
simultaneously

• Equivalently, acts without knowing the others’ actions
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Equilibrium

➢An outcome 𝑎∗ is an equilibrium if no player has incentive to deviate 
unilaterally. More formally, 

𝑢𝑖 𝑎𝑖
∗, 𝑎−𝑖

∗ ≥ 𝑢𝑖 𝑎𝑖, 𝑎−𝑖
∗ ,  ∀𝑎𝑖 ∈ 𝐴𝑖

•  It is a special case of Nash equilibrium, called pure strategy NE

Prisoner’s Dilemma
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Equilibrium

➢An outcome 𝑎∗ is an equilibrium if no player has incentive to deviate 
unilaterally. More formally, 

𝑢𝑖 𝑎𝑖
∗, 𝑎−𝑖

∗ ≥ 𝑢𝑖 𝑎𝑖, 𝑎−𝑖
∗ ,  ∀𝑎𝑖 ∈ 𝐴𝑖

•  It is a special case of Nash equilibrium, called pure strategy NE

Quiz: find equilibrium 
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Equilibrium

➢An outcome 𝑎∗ is an equilibrium if no player has incentive to deviate 
unilaterally. More formally, 

𝑢𝑖 𝑎𝑖
∗, 𝑎−𝑖

∗ ≥ 𝑢𝑖 𝑎𝑖, 𝑎−𝑖
∗ ,  ∀𝑎𝑖 ∈ 𝐴𝑖

•  It is a special case of Nash equilibrium, called pure strategy NE

What about this? Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

Pure strategy NE does not always exist…
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Pure vs Mixed Strategy

➢Pure strategy: take an action deterministically 

➢Mixed strategy: can randomize over actions

• Described by a distribution 𝑥𝑖 where 𝑥𝑖 𝑎𝑖 = prob. of taking action 𝑎𝑖

• |𝐴𝑖|-dimensional simplex Δ𝐴𝑖
: = {𝑥𝑖:  σ𝑎𝑖∈𝐴𝑖

𝑥𝑖 𝑎𝑖 = 1 , 𝑥𝑖 𝑎𝑖 ≥ 0} 
contains all possible mixed strategies for player 𝑖

• Players draw their own actions independently

➢  Given strategy profile 𝑥 = (𝑥1, ⋯ , 𝑥𝑛), expected utility of 𝑖 is 

                                        σ𝑎∈𝐴 𝑢𝑖 𝑎 ⋅ Π𝑖∈ 𝑛 𝑥𝑖(𝑎𝑖) 

• Often denoted as 𝑢𝑖 𝑥  or 𝑢𝑖 𝑥𝑖, 𝑥−𝑖  or 𝑢𝑖 𝑥1, ⋯ , 𝑥𝑛

• When 𝑥𝑖 corresponds to some pure strategy 𝑎𝑖, we also write 𝑢𝑖 𝑎𝑖, 𝑥−𝑖
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Best Responses

Fix any 𝑥−𝑖, 𝑥𝑖
∗ is called a best response to 𝑥−𝑖 if 

                         𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖 ≥ 𝑢𝑖 𝑥𝑖, 𝑥−𝑖 ,  ∀ 𝑥𝑖 ∈ Δ𝐴𝑖

. 

Claim. There always exists a pure best response  

Proof: if randomization over a few actions are optimal, then each of 

these actions must be equally good and all optimal (i.e. pure best 

response)
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Nash Equilibrium (NE)

A relaxation

A mixed strategy profile 𝑥∗ = (𝑥1
∗, ⋯ , 𝑥𝑛

∗ ) is a Nash equilibrium if 

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖

∗ ≥ 𝑢𝑖 𝑥𝑖, 𝑥−𝑖
∗ , ∀ 𝑥𝑖 ∈ Δ𝐴𝑖

, ∀𝑖 ∈ 𝑛 .

That is, for any 𝑖, 𝑥𝑖
∗ is a best response to 𝑥−𝑖

∗ . 

A mixed strategy profile 𝑥∗ = (𝑥1
∗, ⋯ , 𝑥𝑛

∗ ) is a 𝜖-approximate Nash 

equilibrium (𝜖-NE) if 

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖

∗ ≥ 𝑢𝑖 𝑥𝑖, 𝑥−𝑖
∗ − 𝜖, ∀ 𝑥𝑖 ∈ Δ𝐴𝑖

, ∀𝑖 ∈ 𝑛 .

That is, for any 𝑖, 𝑥𝑖
∗ is an 𝜖-approximate best response to 𝑥−𝑖

∗ . 

More often used because we usually will not (or cannot) find exact 

optimal, but approximately optimal strategies  
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Nash Equilibrium (NE)

Remarks

➢An equivalent condition: 𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖

∗ ≥ 𝑢𝑖 𝑎𝑖, 𝑥−𝑖
∗ , ∀ 𝑎𝑖 ∈ 𝐴𝑖, ∀𝑖 ∈ 𝑛

• Since there always exists a pure best response

➢Fundamentally, equilibrium is not about optimality, but rather about stability

• Recall prisoner’s dilemma, both are at bad situations but no one wants to deviate

• This happens quite often in strategic interactions

➢ It is not clear yet that such a mixed strategy profile would exist

• Recall that pure strategy Nash equilibrium may not exist

A mixed strategy profile 𝑥∗ = (𝑥1
∗, ⋯ , 𝑥𝑛

∗ ) is a Nash equilibrium if 

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖

∗ ≥ 𝑢𝑖 𝑥𝑖, 𝑥−𝑖
∗ , ∀ 𝑥𝑖 ∈ Δ𝐴𝑖

, ∀𝑖 ∈ 𝑛 .

That is, for any 𝑖, 𝑥𝑖
∗ is a best response to 𝑥−𝑖

∗ . 
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 

actions) admits at least one mixed strategy Nash equilibrium.

➢ Nash proved this result during his PhD at Princeton

➢Time proves that this is a foundational result in game-theory, 

later won Nobel Prize in Econ

That's just a fixed 

point theorem
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 

actions) admits at least one mixed strategy Nash equilibrium.

➢Example: rock-paper-scissor – what is a mixed strategy NE?

• (
1

3
,

1

3
,

1

3
) is a best response to (

1

3
,

1

3
,

1

3
) 

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

1/3 1/3 1/3

ExpU = 0

ExpU = 0

ExpU = 0
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 

actions) admits at least one mixed strategy Nash equilibrium.

➢A game can have many, even infinitely many, NEs

• Unlike (single-agent) optimization which often has a unique optimal value

• Which equilibrium will the game stabilize at? → the issue of equilibrium 

selection
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➢ Game Theory and Nash Equilibrium

➢Zero-Sum Games: theory and learning

Outline
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Zero-Sum Games

➢Two players: player 1 action 𝑖 ∈ 𝑚 = {1, ⋯ , 𝑚}, player 2 action 𝑗 ∈ [𝑛]

➢The game is zero-sum if 𝑢1 𝑖, 𝑗 + 𝑢2 𝑖, 𝑗 = 0, ∀𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑛]

• Models strictly competitive scenarios

• “Zero-sum” almost always mean “2-player zero-sum” games

• 𝑛-player games can also be zero-sum, but not particularly interesting

➢ Let 𝑢1 𝑥, 𝑦 = σ𝑖∈ 𝑚 ,𝑗∈[𝑛] 𝑢1 𝑖, 𝑗 𝑥𝑖𝑦𝑗 for any 𝑥 ∈ Δ𝑚, 𝑦 ∈ Δ𝑛

➢ (𝑥∗, 𝑦∗) is a NE for the zero-sum game if: (1) 𝑢1 𝑥∗, 𝑦∗ ≥ 𝑢1(𝑖, 𝑦∗) for 
any 𝑖 ∈ [𝑚]; (2) 𝑢1 𝑥∗, 𝑦∗ ≤ 𝑢1(𝑥∗, 𝑗) for any j ∈ [𝑚]

➢ Condition 𝑢1 𝑥∗, 𝑦∗ ≤ 𝑢1(𝑥∗, 𝑗) ⟺ 𝑢2 𝑥∗, 𝑦∗ ≥ 𝑢2 𝑥∗, 𝑗  

➢ We can “forget” 𝑢2; Instead think of player 2 as minimizing player 1’s utility
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Maximin and Minimax Strategy

➢Previous observations motivate the following definitions

Definition. 𝑥∗ ∈ Δ𝑚 is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗).

Remarks: 

➢ 𝑥∗ is player 1’s best action if he was to move first
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Maximin and Minimax Strategy

➢Previous observations motivate the following definitions

Definition. 𝑥∗ ∈ Δ𝑚 is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗).

Definition. 𝑦∗ ∈ Δ𝑛 is a minimax strategy of player 2 if it solves

The corresponding utility value is called minimax value of the game.

min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦).

Remark: 𝑦∗ is player 2’s best action if he was to move first
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Duality of Maximin and Minimax

➢ Let 𝑦∗ = argmin
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦), so 

 min
𝑦∈Δ𝑛

max
𝑖∈ 𝑚

𝑢1(𝑖, 𝑦) = max
𝑖∈ 𝑚

 𝑢1(𝑖, 𝑦∗)

➢ We have  
            max

𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗) ≤ max
𝑥∈Δ𝑚

𝑢1(𝑥, 𝑦∗)

Fact.            max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗) ≤ min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦).

That is, moving first is no better in zero-sum games.

= max
𝑖∈ 𝑚

 𝑢1(𝑖, 𝑦∗)
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Duality of Maximin and Minimax

Minimax Theorem.     max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗) =  min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦).

Fact.            max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗) ≤ min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦).

As far as I can see, there 

could be no theory of games 
… I thought there was nothing 
worth publishing until the 

Minimax Theorem was proved
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Duality of Maximin and Minimax

Minimax Theorem.     max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗) =  min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦).

Fact.            max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑢1(𝑥, 𝑗) ≤ min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦).

As far as I can see, there 

could be no theory of games 
… I thought there was nothing 
worth publishing until the 

Minimax Theorem was proved

✓ This proof illustrates core principles underlying many modern AI/RL 

approaches for solving games (e.g., poker, Go)

Next: a modern proof of minimax 

theorem using no regret concept 
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➢Think about how you play rock-paper-scissor repeatedly

➢In reality, we play like online learning
• You try to analyze the past patterns, then decide which action to 

respond, possibly with some randomness

• This is basically online learning!

Online learning is a natural way to play repeated games

Repeated game: the same game played repeatedly for many rounds
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Repeated Zero-Sum Games and Players’ Regret

Basic Setup:

➢A zero-sum game with payoff matrix 𝑈 ∈ ℝ𝑚×𝑛

➢Row player maximizes utility and has actions 𝑚 = {1, ⋯ , 𝑚}
• Column player thus minimizes utility

➢The game is played repeatedly for 𝑇 rounds

➢Each player uses an online learning algorithm to pick a mixed 
strategy at each round
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Repeated Zero-Sum Games and Players’ Regret

➢From row player’s perspective, the following occurs in order at 
round 𝑡
• Picks a mixed strategy 𝑥𝑡 ∈ Δ𝑚 over actions in [𝑚]

• Her opponent, the column player, picks a mixed strategy 𝑦𝑡 ∈ Δ𝑛

• Action 𝑖𝑡 ∼ 𝑥𝑡 is chosen and row player receives utility 𝑈 𝑖𝑡, 𝑦𝑡 =
σ𝑗∈[𝑛] 𝑦𝑡 𝑗 ⋅ 𝑈(𝑖𝑡, 𝑗)

• Row player observes 𝑦𝑡 (for future use)

➢Column player has a symmetric perspective, but will think of 
𝑈 𝑖, 𝑗  as his cost

Difference from online learning:  utility/cost vector determined by 

the opponent, instead of being stochastic as in MAB
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Repeated Zero-Sum Games and Players’ Regret

➢Expected total utility of row player σ𝑡=1
𝑇 𝑈 𝑥𝑡, 𝑦𝑡  

• Note: 𝑈 𝑥𝑡, 𝑦𝑡 = σ𝑖,𝑗 𝑈 𝑖, 𝑗 𝑥𝑡 𝑖 𝑦𝑡(𝑗) = 𝑥𝑡
𝑇𝑈𝑦𝑡

max
𝑖∈[𝑚]

σ𝑡=1
𝑇 𝑈 𝑖, 𝑦𝑡  − σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡  

➢ Regret of row player is 

➢ Regret of column player is 

σ𝑡=1
𝑇 𝑈 𝑥𝑡, 𝑦𝑡 − min

𝑗∈[𝑛]
σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑗  



35

From No Regret to Minimax Theorem

Now we are ready to prove the minimax theorem, using the 
fact that no regret (i.e., 𝑜(𝑇) regret) algorithms exist
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From No Regret to Minimax Theorem

➢Assume both players use no-regret learning algorithms

➢For row player, we have 

𝑅𝑇
𝑟𝑜𝑤 = max

𝑖∈[𝑚]
σ𝑡=1

𝑇 𝑈 𝑖, 𝑦𝑡  −  σ𝑡=1
𝑇 𝑈 𝑥𝑡, 𝑦𝑡  

⇔  
1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 +
𝑅𝑇

𝑟𝑜𝑤

𝑇
=

1

𝑇
 max
𝑖∈[𝑚]

σ𝑡=1
𝑇 𝑈 𝑖, 𝑦𝑡  

= max
𝑖∈[𝑚]

𝑈 𝑖,
σ𝑡 𝑦𝑡

𝑇
 

≥ min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦  
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From No Regret to Minimax Theorem

➢Assume both players use no-regret learning algorithms

➢For row player, we have

➢Similarly, for column player, 

1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 +
𝑅𝑇

𝑟𝑜𝑤

𝑇
≥ min

𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦  

𝑅𝑇
𝑐𝑜𝑙𝑢𝑚𝑛 = σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 − min
𝑗∈[𝑛]

σ𝑡=1
𝑇 𝑈 𝑥𝑡, 𝑗  

implies 
1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 −
𝑅𝑇

𝑐𝑜𝑙𝑢𝑚𝑛

𝑇
≤ max

𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  
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From No Regret to Minimax Theorem

➢Assume both players use no-regret learning algorithms

➢For row player, we have

➢Similarly, for column player, 

1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 +
𝑅𝑇

𝑟𝑜𝑤

𝑇
≥ min

𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦  

𝑅𝑇
𝑐𝑜𝑙𝑢𝑚𝑛 = σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 − min
𝑗∈[𝑛]

σ𝑡=1
𝑇 𝑈 𝑥𝑡, 𝑗  

implies 
1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 −
𝑅𝑇

𝑐𝑜𝑙𝑢𝑚𝑛

𝑇
≤ max

𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  

min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦 ≤ max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  

➢Let 𝑇 → ∞, no regret implies 
𝑅𝑇

𝑟𝑜𝑤

𝑇
 and 

𝑅𝑇
𝑐𝑜𝑙𝑢𝑚𝑛

𝑇
  tend to 0. We have
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From No Regret to Minimax Theorem

➢Assume both players use no-regret learning algorithms

1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 +
𝑅𝑇

𝑟𝑜𝑤

𝑇
≥ min

𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦  

1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 −
𝑅𝑇

𝑐𝑜𝑙𝑢𝑚𝑛

𝑇
≤ max

𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  

⇒  min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦 ≤ max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  
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From No Regret to Minimax Theorem

➢Assume both players use no-regret learning algorithms

1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 +
𝑅𝑇

𝑟𝑜𝑤

𝑇
≥ min

𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦  

1

𝑇
 σ𝑡=1

𝑇 𝑈 𝑥𝑡, 𝑦𝑡 −
𝑅𝑇

𝑐𝑜𝑙𝑢𝑚𝑛

𝑇
≤ max

𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  

⇒  min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑈 𝑖, 𝑦 ≤ max
𝑥∈Δ𝑚

min
𝑗∈[𝑛]

𝑈 𝑥, 𝑗  

➢Recall that min-max ≥ max-min also holds, because moving 
second will not be worse for the row player 

✓ These conclude the proof of minimax theorem

✓ Minimax Theorem implies nice equilibrium characterization 

in zero-sum games
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⇐:  if 𝑥∗ [𝑦∗] is the maximin [minimax] strategy, then (𝑥∗, 𝑦∗) is a NE

➢Want to prove 𝑢1 𝑥∗, 𝑦∗ ≥ 𝑢1 𝑖, 𝑦∗ , ∀𝑖 ∈ [𝑚]

𝑢1 𝑥∗, 𝑦∗ ≥ min
j

𝑢1 𝑥∗, 𝑗  

 = max
𝑥∈Δ𝑚

min
j

𝑢1 𝑥, 𝑗  

 = min
𝑦∈Δ𝑛

max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦)

 = max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦∗)

 ≥ 𝑢1 𝑖, 𝑦∗ , ∀𝑖

➢ Similar argument shows 𝑢1 𝑥∗, 𝑦∗ ≤ 𝑢1 𝑥∗, 𝑗 , ∀𝑗 ∈ [𝑛]

➢ So 𝑥∗, 𝑦∗  is a NE

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only 

if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively. 

Characterizing the NE in Zero-Sum Games
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Characterizing the NE in Zero-Sum Games

⇒:  if (𝑥∗, 𝑦∗) is a NE, then 𝑥∗ [𝑦∗] is the maximin [minimax] strategy 

➢Observe the following inequalities

𝑢1 𝑥∗, 𝑦∗ = max
𝑖∈[𝑚]

𝑢1(𝑖, 𝑦∗) 

 ≥ min
𝑦∈Δ𝑛

max
𝑖∈ 𝑚

𝑢1 𝑖, 𝑦

 = max
𝑥∈Δ𝑚

min
j

𝑢1 𝑥, 𝑗  

≥ min
j

𝑢1 𝑥∗, 𝑗  

= 𝑢1 𝑥∗, 𝑦∗  

➢ So the two “≥” must both achieve equality. 

• The first equality implies 𝑦∗ is the minimax strategy

• The second equality implies 𝑥∗ is the maximin strategy

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only 

if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively. 
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Characterizing the NE in Zero-Sum Games

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only 

if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively. 

Corollary: In repeated zero-sum games, suppose both players 

use learning algorithms with regret 𝑅𝑇 to select action sequence 

{𝑥𝑡} and {𝑦𝑡}. Then (
σ𝑡=1

𝑇 𝑥𝑡

𝑇
,

σ𝑡=1
𝑇 𝑦𝑡

𝑇
) is an 𝜖-NE of the game with 

𝜖 =
𝑅𝑇

𝑇
. 



Thank  You

Haifeng Xu 

University of Chicago

haifengxu@uchicago.edu
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