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Ø Correction: HW3 will be out after HW2 due

Ø Quiz is this Thur – will be light, ~half size of Quiz 1 

Announcement



DATA 37200:  Learning, Decisions, and Limits
(Winter 2025)

Solving Zero-Sum Sequential Games

Instructor:  Haifeng Xu
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Ø Sequential Games and Extensive-Form 
Representations

ØSolving Complete-Information Games

ØSolving Incomplete-Information Games

Outline
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Many ”Real” Games Are Sequential

ØEntertainment games: Checker, Chess, Go, 
Poker, StarCraft, etc.

ØNegotiation

ØInteractions in adversarial/military environments

ØPolitical campaigns ... 
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Many ”Real” Games Are Sequential

ØEntertainment games: Checker, Chess, Go, 
Poker, StarCraft, etc.

ØNegotiation

ØInteractions in adversarial/military environments

ØPolitical campaigns … 

This lecture focuses on strictly competitive situations – zero-sum. 

ü Appears widely

ü A great ground for applying online/reinforcement learning

ü General-sum games are much more difficult to solve  
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𝑏! 𝑏" 

𝑎! (2,  1) (-2, -2)

𝑎" (2.01, -2) (1, 2)
A

B
Ø What is the NE if A,B move 

simultaneously?
• (𝑎!, 𝑏!) is the unique Nash, resulting in 

utility pair (1,2)

Ø If A moves first; B sees A’s move and 
then best responds, how should A play?

• Play action 𝑎" deterministically!
• B will respond optimally with 𝑏"

To Begin With…

Sequential games do cricially differ from simultaneous-move 
games
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𝑏! 𝑏" 

𝑎! (2,  1) (-2, -2)

𝑎" (2.01, -2) (1, 2)
A

B

Representing Sequential Games in Extensive Form

Also known as extensive-form games

Player 
A

Player 
B𝑎!

𝑎" Player 
B

𝑏!

𝑏"

𝑏!

𝑏"

(2,  1)

(-2,  -2)

(2.01,  -2)

(1,  2)

Represented via a tree structure in which 
directions indicate move orders
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𝑏! 𝑏" 

𝑎! (2,  1) (-2, -2)

𝑎" (2.01, -2) (1, 2)
A

B

Representing Sequential Games in Extensive Form

Ø Each leaf node is called terminal state 𝑧 ∈ 𝑍
• I.e., game terminates here
• In Go, this is where game ends
• Player 𝑖’th utility function 𝑢#(𝑧)   
• Two-player zero-sum:  𝑢$ 𝑧 + 𝑢% 𝑧 = 0, ∀𝑧

Player 
A

Player 
B𝑎!

𝑎" Player 
B

𝑏!

𝑏"

𝑏!

𝑏"

(2,  1)

(-2,  -2)

(2.01,  -2)

(1,  2)
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𝑏! 𝑏" 

𝑎! (2,  1) (-2, -2)

𝑎" (2.01, -2) (1, 2)
A

B

Representing Sequential Games in Extensive Form

Player 
A

Player 
B𝑎!

𝑎" Player 
B

𝑏!

𝑏"

𝑏!

𝑏"

(2,  1)

(-2,  -2)

(2.01,  -2)

(1,  2)

Ø Any (possibly partial) trajectory is called a history ℎ ∈ 𝐻 
• A history can consist of moves by multiple players
• Let 𝐻# = {ℎ ∈ 𝐻: 𝑃 ℎ = 𝑖} denote those associated with 𝑖
• Notably, can think of terminal states 𝑍 ⊂ 𝐻 

Ø Each non-terminal history ℎ corresponds to 
• a player 𝑃 ℎ ∈ {𝐴, 𝐵} who moves next
• An action set 𝐴(ℎ) available to player 𝑃 ℎ  

𝑃 𝑎" = 𝐵

𝐴 𝑎! = {𝑏", 𝑏!}

An EFG does not need to 
be symmetric
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𝑏! 𝑏" 

𝑎! (2,  1) (-2, -2)

𝑎" (2.01, -2) (1, 2)
A

B

Representing Sequential Games in Extensive Form

Player 
A

Player 
B𝑎!

𝑎"

𝑏!

𝑏"

(2,  1)

(-2,  -2)

(2.01,  -2)

Ø Any (possibly partial) trajectory is called a history ℎ ∈ 𝐻 
• A history can consist of moves by multiple players
• Let 𝐻# = {ℎ ∈ 𝐻: 𝑃 ℎ = 𝑖} denote those associated with 𝑖
• Notably, can think of terminal states 𝑍 ⊂ 𝐻 

Ø Each non-terminal history ℎ corresponds to 
• a player 𝑃 ℎ ∈ {𝐴, 𝐵} who moves next
• An action set 𝐴(ℎ) available to player 𝑃 ℎ  

𝑃 𝑎" = 𝐵

𝐴 𝑎! = {𝑏", 𝑏!}History 𝑎! is a terminal 
state here  

An EFG does not need to 
be symmetric
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(𝑏!, 𝑏!) (𝑏!, 𝑏") (𝑏", 𝑏!) (𝑏", 𝑏") 

𝑎! (2,  1) (2, 1) (-2, -2) (-2, -2)

𝑎" (2.01, -2) (1, 2) (2.01, -2) (1, 2)
A

B

From Extensive Form to Normal Form

Idea: enumerate each player’s action choices for every associated history

B’s action under 𝑎! 

B’s action under 𝑎" 

Ø B acts upon two 
possible histories

Ø Two choices at 
each situation

Claim 1. Any extensive form game can be converted to an “equivalent” 
normal-form game
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(𝑏!, 𝑏!) (𝑏!, 𝑏") (𝑏", 𝑏!) (𝑏", 𝑏") 

𝑎! (2,  1) (2, 1) (-2, -2) (-2, -2)

𝑎" (2.01, -2) (1, 2) (2.01, -2) (1, 2)
A

B

From Extensive Form to Normal Form

Idea: enumerate each player’s action choices for every associated history

B’s action under 𝑎! 

B’s action under 𝑎" 

What’s the NE for the above normal-form game?

ü  Recall: in previous sequential move, 𝑎!, (𝑏!, 𝑏") is a 
Nash equilibrium 

ü 𝑎!, (𝑏!, 𝑏") is also a NE in the above game
ü However, 𝑎!, (𝑏!, 𝑏") is not the unique NE

Claim 1. Any extensive form game can be converted to an “equivalent” 
normal-form game
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Claim 1. Any extensive form game can be converted to an “equivalent” 
normal-form game

From Extensive Form to Normal Form

Idea: enumerate each player’s action choices for every associated history

What about this game? 

A

B𝑎!

𝑎#

𝑏!

𝑏"

𝑎"
.
.
.

B

B

𝑏!
𝑏"

𝑏!
𝑏"

Ø B’s strategy in normal-form representation 
needs to enumerate choices under every 𝑎# 

Ø Blow up exponentially: 2& many!

whose size is exponential in the number of nodes

This is why we need smarter ways to solve extensive-form games
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From Normal Form to Extensive Form

Idea: allow incomplete information in the extensive form game

Ø Recall previous representation under sequential move
Ø To allow simultaneous move, we need the concept of information set

Claim 2. Any normal form game can be converted to an equivalent 
extensive-form game
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From Normal Form to Extensive Form

Claim 2. Any normal form game can be converted to an equivalent 
extensive-form game

Def. An information set 𝐼# is a subset of histories that share the same next-
move player 𝑖 ∈ {𝐴, 𝐵} and the same action set. Formally,

∀	ℎ, ℎ' ∈ 𝐼# , 𝑃 ℎ = 𝑖	 and	 𝐴 ℎ = 𝐴(ℎ′)
Player 𝑖 cannot distinguish which ℎ ∈ 𝐼# she is at, hence has to use the 
same strategy for every ℎ ∈ 𝐼#.  

Why cannot distinguish? à There are states that 𝑖 cannot observe 
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From Normal Form to Extensive Form

Claim 2. Any normal form game can be converted to an equivalent 
extensive-form game

Def. An information set 𝐼# is a subset of histories that share the same next-
move player 𝑖 ∈ {𝐴, 𝐵} and the same action set. Formally,

∀	ℎ, ℎ' ∈ 𝐼# , 𝑃 ℎ = 𝑖	 and	 𝐴 ℎ = 𝐴(ℎ′)
Player 𝑖 cannot distinguish which ℎ ∈ 𝐼# she is at, hence has to use the 
same strategy for every ℎ ∈ 𝐼#.  

Why cannot distinguish? à There are states that 𝑖 cannot observe 

with incomplete information

Information set 𝐼% à B cannot observe what action A took, making 
the game effectively simultaneous move 



17

Recap on What We Have Thus Far

Ø Extensive form game (EFG) with incomplete information
ü A powerful class of games that capture most entertainment games and 

many games in real life (e.g., negotiation, military planning, etc.)
Ø Consists of 

ü Terminal states, and associated player utilities
ü History of moves, associated next-to-move player and available actions 
ü Information set 𝐼$ ⊂ 𝐻$, which captures a player 𝑖’s incomplete information

Ø EFG can be converted to a normal form game but inefficient, and any normal-
form game can be converted to an EFT
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Solving EFGs

Ø Had a long history in AI
Ø Techniques are useful for improving reasoning (even for LLMs)
Ø Similar in spirit to RL in MDPs

ü Player strategies à policy
ü Utility à rewards
ü Information set à uncertainty of future states

Ø Having incomplete information (i.e., information set) or not matters a 
lot to the problem’s complexity

Complete information EFGs Incomplete information EFGs
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Ø Sequential Games and Extensive-Form 
Representations

ØSolving Complete-Information Games

ØSolving Incomplete-Information Games

Outline

Pacman Tic-Tac-ToeGoChess
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Will Cover Two Algorithms

1. Minimax Search
• The core algorithm framework for IBM’s deep blue
• Real implementation has lots of speed-up improvements via expert 

knowledge

2. Monte-Carlo Tree Search (MCTS)
• The core algorithmic framework for AlphaGo
• Deep RL played a key role

“Solving” = finding Nash equilibrium strategy (i.e., Maximin) for one player
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Will Cover Two Algorithms

1. Minimax Search
• The core algorithm framework for IBM’s deep blue
• Real implementation has lots of speed-up improvements via expert 

knowledge

2. Monte-Carlo Tree Search (MCTS)
• The core algorithmic framework for AlphaGo
• Deep RL played a key role

Remarks. 
Ø Go is much more complex to play than Chess
Ø Minimax is applicable to games with not-to-big size, but is “more optimal”
Ø MCTS scales to games with very large size, but less optimal
Ø To beat human champions, it is not necessary to find NE strategy, but 

just need to find superhuman strategies (e.g., AlphaGo)

“Solving” = finding Nash equilibrium strategy (i.e., Maximin) for one player
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click to edit master title style

Ø Two-player zero-sum sequential game with complete information 
Ø Different from single-agent search as in MDP!

Vanilla Minimax for Small-Size EFGs
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click to edit master title style

Ø Goal: design algorithms for calculating a policy which 
recommends a move at each node (i.e., a game history)

Vanilla Minimax for Small-Size EFGs
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click to edit master title style

MAX

MIN

MAX

Ø Key idea: recursively maximize 
worst/minimal utilities  

Ø primarily used for deterministic, two-
player, zero-sum games

Minimax Search
MIN
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click to edit master title style

20 -8 -18 -5 -10 +4… … 20 +8

Agent move
(maximize utility)

Adversary move
(minimize agent’s utility)

Initial state

The EFT’s Game Tree
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click to edit master title style

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

-8 -10

-8

Minimax value of initial state = Agent’s best achievable utility 
against an optimal adversary

Key Concept: Minimax Values

= Agent’s utility at equilibrium
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click to edit master title styleExample: Tic-Tac-Toe
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click to edit master title style

Ø Goal: compute minimax value for 
the initial state
§ Usually also need to record the 

path that achieves the value

Ø Minimax — the basic algorithm 
§ Players alternate turns
§ Expand a game tree
§ Recursively compute each node’s 

minimax value

8 2 5 6

max

min2 5

5

Terminal values

Minimax values:
computed recursively

Minimax Search
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click to edit master title style

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Easy to Implement Minimax
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click to edit master title style
Ø Is it optimal? Yes, against an optimal adversary, and 

even better if adversary is sub-optimal

Ø Computational efficiency
§ Need to visit every node
§ Only feasible when game tree is small

Ø Example: for chess, b » 35, m » 80
§ Exact solution is infeasible 

Ø Drawbacks: high time complexity, cannot reach leaves in 
most interesting games

Complexity and Limitations
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click to edit master title style
Ø Depth-limited search

§ Instead, search only to a limited depth in the tree
§ Replace terminal utilities with an evaluation function 

for non-terminal nodes

Ø Performance relies on two key factors
§ Depth: typically deeper search is better 
§ Evaluation function: optimal if given perfect 

evaluation 

Ø Example:
§ E.g., given 100 sec, can explore 10K nodes/sec
§ So can check 1M nodes per move

Search reaches about depth 8 – decent chess 
program

Ø No guarantee of optimality

? ? ? ?

-1 -2 4 9

4

min
max

-2 4

Speed-up Idea 1: Depth-Limited
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click to edit master title style
Ø Evaluation functions “score” non-terminals in depth-limited search

Ø Ideally: returns the actual minimax value of the state
Ø In practice: a simple heuristic is weighted linear sum of features

• e.g.  f1(s) = (num white queens – num black queens), etc.

Ø Fashionable idea: use deep neural networks (this is how AlphaGo works)

Value Function Approximation
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click to edit master title style

Key fact: to compute minimax value of initial state, no need to look at 
every branches à eliminate unnecessary computation

Speed-up Idea 2: Pruning
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click to edit master title style

12 8 5 23 2 144 6

Min 3

Max

2 2

3

From a Max player’s perspective

Example: Standard Minimax
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click to edit master title style

12 8 5 23 2 14

Min 3

Max

≤ 2 2

3≥

From a Max player’s perspective

Example: Pruning in Minimax
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click to edit master title style

12 83

Min

Max
-∞ = α

α: MAX’s maximum possible value so far
β: MIN’s minimum possible value so far

∞ = β3

3

Formalizing This Procedure
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click to edit master title style

12 83 2

Min

Max
-∞ = α

∞ = β

3

2

Formalizing This Procedure
α: MAX’s maximum possible value so far
β: MIN’s minimum possible value so far
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click to edit master title style

12 8 5 23 2 14

Min

Max
-∞ = α

∞ = β

3

1452

Formalizing This Procedure
α: MAX’s maximum possible value so far
β: MIN’s minimum possible value so far
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click to edit master title style

Ø General configuration (MIN version)
§ We’re computing the min value at some node n
§ Loop over n’s children
§ n’s estimate β of the children’s min is decreasing
§ Who processes V(n)?  MAX
§ Let α be the best value that MAX can get so far
§ If α ≥ β, MAX will avoid node n, so we can stop 

considering n’s other children (it’s already bad 
enough that it won’t be played by MAX)

Ø MAX version is symmetric 2

Min

Max

-∞ = α

∞ = β

3

2

node n

Alpha-Beta Pruning
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click to edit master title style

Min

Max

Max 10 ≥ 100

10

2

≤ 2

10

≤

≥

Alpha-Beta Pruning: Example
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click to edit master title style

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, 
β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, 
β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s maximum possible value so far
β: MIN’s minimum possible value so far

• In both cases, if state is a terminal, simply return its utility

Implementing Alpha-Beta Pruning
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Will Cover Two Algorithms

1. Minimax Search
• The core algorithm framework for IBM’s deep blue
• Real implementation has lots of speed-up improvements via expert 

knowledge

2. Monte-Carlo Tree Search (MCTS)
• The core algorithmic framework for AlphaGo
• Deep RL played a key role

“Solving” = finding Nash equilibrium strategy (i.e., Maximin) for one player
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Monte Carlo Tree Search (MCTS)

ØKey idea: estimating the value of a node via Monte Carlo 
simulations

? ? ? ?

-1 -2 4 9

4

min
max

-2 4
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Monte Carlo Tree Search (MCTS)

ØKey idea: estimating the value of a node via Monte Carlo 
simulations

Overview of MCTS
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Policies

ØPolicies are crucial for how MCTS operates

ØTree policy
• Used to determine how children are selected

ØDefault policy
• Used to determine how MC simulations are run (e.g., randomized)
• Result of simulation is backpropagated to update values
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Selection

ØStart at root node

ØBased on tree policy select child
• This is where deep learning comes in – when tree policy is very 

complex, use a neural network to output selection
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Expansion

ØExpand to next one (or a few) child nodes in the tree
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Rollout vis MC Simulation

ØRun simulations of path based on default policy

ØGet values at end of of simulation 
• For board games, board outcomes determine the value
• Can use UCB to encourage exploration
• This is where deep learning comes in – can use value network to estimate the 

value of a state (trained from expert data as in AlphaGo or pure simulation data 
as in AlphaZero) 
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Backpropagation

ØLike that in Minimax search



50

Ø Sequential Games and Extensive-Form 
Representations

ØSolving Complete-Information Games

ØSolving Incomplete-Information Games

Outline
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How to Represent a Strategy/Policy Here?

Policy representation for player 𝑖 ∈ {𝐴, 𝐵} 
Ø For each information set 𝐼!, 𝑖 uses a mixed strategy 𝜎! 𝐼! ∈ Δ(𝐴(𝐼!))

§  𝜎! 𝐼! 𝑎 = prob of taking action 𝑎

Ø This is not a trivial statement, since a mixed strategy generally should be a 
distribution over all possible move combinations
§ Recall the (𝑏", 𝑏#) action in matrix representation
§ [Kuhn, 1953] shows that it is without loss to consider the above policies, which 

decompose joint moves into a randomized move at each information set
§ Need to assume every player remembers all the past (“perfect recall”)  
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Policy Re-Formulation in Sequence-form

Policy representation for player 𝑖 ∈ {𝐴, 𝐵} 
Ø For each information set 𝐼!, 𝑖 uses a mixed strategy 𝜎! 𝐼! ∈ Δ(𝐴(𝐼!))

§  𝜎! 𝐼! 𝑎 = prob of taking action 𝑎

ü Prob (a sequence of actions) = Π$	&'	()*+)',)	𝜎!(𝑎)

ü Above policy can be equivalently represented as probabilities over all sequences
⇒ any policy induce a distribution over sequences
⇐ any distribution over sequence induces a policy like above 

For example:

𝜎! 𝐼! 𝑎" =
Pr(𝑎#, 𝑎")

Pr 𝑎#, 𝑎" + Pr 𝑎#, 𝑎$ +Pr 𝑎#, 𝑎%

𝐼$
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Hence, Can Solve Small Games by LPs

ØRepresenting each player’s mixed strategy as probabilities over that 
player’s action sequence (at most #nodes many variables)

ØExpected utilities can be written as linear functions of these probabilities

ØCan be solved by LPs similar to that of the matrix form

Naturally, everything here applies to complete-information EFGs as well 
as they are special cases
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What About Large Games Like Pokers

ØLP approaches do not work any more, since #variables too large

ØNot easy to extend previous tree search methods, with information set 
and randomized actions
§ Note: no need to randomize in complete-info EFTs

ØPractically successful approaches are based on no-regret learning
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The Core Idea

ØWhen game tree is extremely large…
§ No hope to compute probabilities for each action sequence in the tree
§ Hence, can only optimize “local” moves – i.e., optimizing the mixed strategy 
𝜎! 𝐼! 	before for each information set 𝐼!   

ØHowever, regret of a policy is a global notion – question is, how to ensure 
each local move reduces “global regret” 
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The Core Idea

ØCore idea is regret decomposition – decomposing total regret into 
(hopefully) the sum of “local regrets” for each local moves
§ Key is to find a notion of “local regret”, the sum of which upper bounds total regret
§  One choice is CounterFactual Regret (CFR) for each local move

ØSuppose we can do so… we basically decomposed policy design to each 
local move, which is much more manageable
§ You can run any no-regret learning algorithm as you liked, just using the right 

reward value and regret notion
§ MCTS shares similar spirit, but uses very different approaches
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Definition of Counterfactual Regrets (CFR)

Defined for each information set 𝐼#
ØSuppose the game is played repeatedly for 𝑇 times

Ø Player 𝑖 used strategy 𝜎!- (i.e., 𝜎!-[𝐼!] at info set 𝐼!)
§ Let 𝜎& denote their joint action profile

𝑈# 𝜎, 𝐼 =

=
∑(∈*∑+∈, Pr play	reach	ℎ	under	𝜎-# Pr ℎ → 𝑧 𝑢#(𝑧)

Pr(play	reach	𝐼	under	𝜎-# 	)

Expected 𝑖’th utility, conditioned on 
(1) all other players play 𝜎.!; and (2) 
player 𝑖 plays to reaches 𝐼 

A local deviation from 𝜎
ü Policy 𝜎|𝐼! → 𝑎 is the same as 𝜎 except that 

player 𝑖 always plays action 𝑎 ∈ 𝐴(𝐼!) at info set 𝐼!

Where the term 
“counterfactual” comes from
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Definition of Counterfactual Regrets (CFR) 

Defined for each information set 𝐼#
ØSuppose the game is played repeatedly for 𝑇 times

Ø Player 𝑖 used strategy 𝜎!- (i.e., 𝜎!-[𝐼!] at info set 𝐼!)
§ Let 𝜎& denote their joint action profile

𝑈# 𝜎, 𝐼 = Expected 𝑖’th utility, conditioned on 
(1) all other players play 𝜎.!; and (2) 
player 𝑖 plays to reaches 𝐼 

Where the term 
“counterfactual” comes from

𝐶𝐹𝑅# 𝐼# → 𝑎 =
1
𝑇
Q
./"

0

𝑈# 𝜎. 𝐼 → 𝑎, 𝐼# 	− 𝑈# 𝜎., 𝐼# 	 × Pr(reach	𝐼# 	under	𝜎-#)

Regret minimization picks the 𝑎 to minimize it
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