

Correction: HW3 will be out after HW2 due
 Quiz is this Thur – will be light, ~half size of Quiz 1

DATA 37200: Learning, Decisions, and Limits (Winter 2025)

Solving Zero-Sum Sequential Games

Instructor: Haifeng Xu

Outline

- Sequential Games and Extensive-Form Representations
- Solving Complete-Information Games
- Solving Incomplete-Information Games

Many "Real" Games Are Sequential

- Entertainment games: Checker, Chess, Go, Poker, StarCraft, etc.
- ➤ Negotiation
- >Interactions in adversarial/military environments
- ≻Political campaigns ...

Many "Real" Games Are Sequential

Entertainment games: Checker, Chess, Go, Poker, StarCraft, etc.

- ≻Negotiation
- >Interactions in adversarial/military environments

≻Political campaigns ...

This lecture focuses on strictly competitive situations – **zero-sum**.

- ✓ Appears widely
- ✓ A great ground for applying online/reinforcement learning
- ✓ General-sum games are much more difficult to solve

To Begin With...

Sequential games do cricially differ from simultaneous-move games

- What is the NE if A,B move simultaneously?
 - (a₂, b₂) is the unique Nash, resulting in utility pair (1,2)
- If A moves first; B sees A's move and then best responds, how should A play?
 - Play action a_1 deterministically!
 - B will respond optimally with b_1

Represented via a tree structure in which directions indicate move orders

- > Each leaf node is called terminal state $z \in Z$
 - I.e., game terminates here
 - In Go, this is where game ends
 - Player *i*'th utility function $u_i(z)$
 - Two-player zero-sum: $u_A(z) + u_B(z) = 0, \forall z$

- > Any (possibly partial) trajectory is called a history $h \in H$
 - A history can consist of moves by multiple players
 - Let $H_i = \{h \in H : P(h) = i\}$ denote those associated with *i*
 - Notably, can think of terminal states $Z \subset H$
- Each non-terminal history h corresponds to
 - a player $P(h) \in \{A, B\}$ who moves next
 - An action set A(h) available to player P(h)

An EFG does not need to be symmetric

- > Any (possibly partial) trajectory is called a history $h \in H$
 - A history can consist of moves by multiple players
 - Let $H_i = \{h \in H : P(h) = i\}$ denote those associated with *i*
 - Notably, can think of terminal states $Z \subset H$
- Each non-terminal history h corresponds to
 - a player $P(h) \in \{A, B\}$ who moves next
 - An action set A(h) available to player P(h)

An EFG does not need to be symmetric

From Extensive Form to Normal Form

Claim 1. Any extensive form game can be converted to an "equivalent" normal-form game

Idea: enumerate each player's action choices for every associated history

Β

B's action under a_1

B's action under a_2

- B acts upon two possible histories
- Two choices at each situation

From Extensive Form to Normal Form

Claim 1. Any extensive form game can be converted to an "equivalent" normal-form game

Idea: enumerate each player's action choices for every associated history

What's the NE for the above normal-form game?

- ✓ Recall: in previous sequential move, a_1 , (b_1, b_2) is a Nash equilibrium
- ✓ a_1 , (b_1, b_2) is also a NE in the above game
- ✓ However, a_1 , (b_1, b_2) is not the unique NE

From Extensive Form to Normal Form

Claim 1. Any extensive form game can be converted to an "equivalent" normal-form game whose size is exponential in the number of nodes

Idea: enumerate each player's action choices for every associated history

This is why we need smarter ways to solve extensive-form games

What about this game?

- B's strategy in normal-form representation needs to enumerate choices under every a_i
- > Blow up exponentially: 2^k many!

From Normal Form to Extensive Form

Claim 2. Any normal form game can be converted to an equivalent extensive-form game

Idea: allow incomplete information in the extensive form game

- Recall previous representation under sequential move
- > To allow simultaneous move, we need the concept of information set

From Normal Form to Extensive Form

Claim 2. Any normal form game can be converted to an equivalent extensive-form game

Def. An **information set** I_i is a subset of histories that share the same nextmove player $i \in \{A, B\}$ and the same action set. Formally,

$$\forall h, h' \in I_i, \quad P(h) = i \text{ and } A(h) = A(h')$$

Player *i* cannot distinguish which $h \in I_i$ she is at, hence has to use the same strategy for every $h \in I_i$.

Why cannot distinguish? \rightarrow There are states that *i* cannot observe

From Normal Form to Extensive Form

Claim 2. Any normal form game can be converted to an equivalent extensive-form game with incomplete information

Def. An **information set** I_i is a subset of histories that share the same nextmove player $i \in \{A, B\}$ and the same action set. Formally,

$$\forall h, h' \in I_i, \quad P(h) = i \text{ and } A(h) = A(h')$$

Player *i* cannot distinguish which $h \in I_i$ she is at, hence has to use the same strategy for every $h \in I_i$.

Why cannot distinguish? \rightarrow There are states that *i* cannot observe

Information set $I_B \rightarrow B$ cannot observe what action A took, making the game effectively simultaneous move

Recap on What We Have Thus Far

- > Extensive form game (EFG) with incomplete information
 - ✓ A powerful class of games that capture most entertainment games and many games in real life (e.g., negotiation, military planning, etc.)
- Consists of
 - Terminal states, and associated player utilities
 - History of moves, associated next-to-move player and available actions
 - ✓ Information set $I_i \subset H_i$, which captures a player *i*'s incomplete information
- EFG can be converted to a normal form game but inefficient, and any normalform game can be converted to an EFT

Solving EFGs

- Had a long history in AI
- Techniques are useful for improving reasoning (even for LLMs)
- Similar in spirit to RL in MDPs
 - ✓ Player strategies → policy
 - ✓ Utility \rightarrow rewards
 - ✓ Information set → uncertainty of future states
- Having incomplete information (i.e., information set) or not matters a lot to the problem's complexity

Complete information EFGs

Incomplete information EFGs

Outline

Sequential Games and Extensive-Form Representations

Solving Complete-Information Games

Solving Incomplete-Information Games

Chess

Go

Pacman

Will Cover Two Algorithms

"Solving" = finding Nash equilibrium strategy (i.e., Maximin) for one player

- 1. Minimax Search
 - The core algorithm framework for IBM's deep blue
 - Real implementation has lots of speed-up improvements via expert knowledge
- 2. Monte-Carlo Tree Search (MCTS)
 - The core algorithmic framework for AlphaGo
 - Deep RL played a key role

Will Cover Two Algorithms

"Solving" = finding Nash equilibrium strategy (i.e., Maximin) for one player

- 1. Minimax Search
 - The core algorithm framework for IBM's deep blue
 - Real implementation has lots of speed-up improvements via expert knowledge
- 2. Monte-Carlo Tree Search (MCTS)
 - The core algorithmic framework for AlphaGo
 - Deep RL played a key role

Remarks.

- ➢ Go is much more complex to play than Chess
- Minimax is applicable to games with not-to-big size, but is "more optimal"
- MCTS scales to games with very large size, but less optimal
- To beat human champions, it is not necessary to find NE strategy, but just need to find superhuman strategies (e.g., AlphaGo)

Vanilla Minimax for Small-Size EFGs

Two-player zero-sum sequential game with complete information
 Different from single-agent search as in MDP!

Vanilla Minimax for Small-Size EFGs

Goal: design algorithms for calculating a policy which recommends a move at each node (i.e., a game history)

Minimax Search

The EFT's Game Tree

Key Concept: Minimax Values

Terminal States: V(s) = terminal utility

Minimax value of initial state = Agent's best achievable utility against an optimal adversary = Agent's utility at equilibrium

Example: Tic-Tac-Toe

Minimax Search

- Goal: compute minimax value for the initial state
 - Usually also need to record the path that achieves the value

- ➤ Minimax the basic algorithm
 - Players alternate turns
 - Expand a game tree
 - Recursively compute each node's minimax value

Minimax values: computed recursively

Terminal values

Easy to Implement Minimax

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return min-value(state)

for each successor of state:
 v = max(v, value(successor))

return v

def min-value(state):
 initialize v = +∞
 for each successor of state:
 v = min(v, value(successor))
 return v

Complexity and Limitations

- Is it optimal? Yes, against an optimal adversary, and even better if adversary is sub-optimal
- Computational efficiency
 - Need to visit every node
 - Only feasible when game tree is small
- > Example: for chess, $b \approx 35$, $m \approx 80$
 - Exact solution is infeasible
- Drawbacks: high time complexity, cannot reach leaves in most interesting games

Speed-up Idea 1: Depth-Limited

Depth-limited search

- Instead, search only to a limited depth in the tree
- Replace terminal utilities with an evaluation function for non-terminal nodes

Performance relies on two key factors

- Depth: typically deeper search is better
- Evaluation function: optimal if given perfect evaluation
- > Example:
 - E.g., given 100 sec, can explore 10K nodes/sec
 - So can check 1M nodes per move
 Search reaches about depth 8 decent chess program

No guarantee of optimality

Value Function Approximation

> Evaluation functions "score" non-terminals in depth-limited search

- Ideally: returns the actual minimax value of the state
- > In practice: a simple heuristic is weighted linear sum of features
 - e.g. $f_1(s) = (\text{num white queens} \text{num black queens})$, etc. $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$
- > Fashionable idea: use deep neural networks (this is how AlphaGo works)

Speed-up Idea 2: Pruning

Key fact: to compute minimax value of initial state, no need to look at every branches \rightarrow eliminate unnecessary computation

Example: Standard Minimax

From a Max player's perspective

Example: Pruning in Minimax

From a Max player's perspective

Formalizing This Procedure

α: MAX's maximum possible value so farβ: MIN's minimum possible value so far

Formalizing This Procedure

α: MAX's maximum possible value so farβ: MIN's minimum possible value so far

Formalizing This Procedure

α: MAX's maximum possible value so farβ: MIN's minimum possible value so far

Alpha-Beta Pruning

➢ General configuration (MIN version)

- We're computing the min value at some node n
- Loop over *n*'s children
- *n's* estimate β of the children's min is decreasing
- Who processes V(n)? MAX
- Let α be the best value that **MAX** can get so far
- If α ≥ β, MAX will avoid node n, so we can stop considering n's other children (it's already bad enough that it won't be played by MAX)

> MAX version is symmetric

Alpha-Beta Pruning: Example

40

Implementing Alpha-Beta Pruning

 $\begin{array}{l} \alpha: \mbox{ MAX's maximum possible value so far} \\ \beta: \mbox{ MIN's minimum possible value so far} \end{array}$

```
\begin{array}{l} \mbox{def max-value(state, } \alpha, \beta): \\ \mbox{initialize } v = -\infty \\ \mbox{for each successor of state:} \\ v = max(v, min-value(successor, \alpha, \beta)) \\ \mbox{if } v \geq \beta \mbox{ return } v \\ \alpha = max(\alpha, v) \\ \mbox{return } v \end{array}
```

```
\begin{array}{l} \mbox{def min-value(state , \alpha, \beta):} \\ \mbox{initialize } v = +\infty \\ \mbox{for each successor of state:} \\ v = min(v, max-value(successor, \alpha, \beta)) \\ \mbox{if } v \leq \alpha \mbox{ return } v \\ \beta = min(\beta, v) \\ \mbox{return } v \end{array}
```

• In both cases, if state is a terminal, simply return its *utility*

Will Cover Two Algorithms

"Solving" = finding Nash equilibrium strategy (i.e., Maximin) for one player

- 1. Minimax Search
 - The core algorithm framework for IBM's deep blue
 - Real implementation has lots of speed-up improvements via expert knowledge
- 2. Monte-Carlo Tree Search (MCTS)
 - The core algorithmic framework for AlphaGo
 - Deep RL played a key role

Monte Carlo Tree Search (MCTS)

Key idea: estimating the value of a node via Monte Carlo simulations

Monte Carlo Tree Search (MCTS)

Key idea: estimating the value of a node via Monte Carlo simulations

Overview of MCTS

Policies

➢Policies are crucial for how MCTS operates

≻Tree policy

- Used to determine how children are selected
- Default policy
 - Used to determine how MC simulations are run (e.g., randomized)
 - Result of simulation is backpropagated to update values

Selection

Start at root node

Based on tree policy select child

 This is where deep learning comes in – when tree policy is very complex, use a neural network to output selection

Policy network

 $p_{\sigma/\rho}$ (a s)

Expansion

>Expand to next one (or a few) child nodes in the tree

Rollout vis MC Simulation

Run simulations of path based on default policy

- > Get values at end of of simulation
 - · For board games, board outcomes determine the value
 - Can use UCB to encourage exploration
 - This is where deep learning comes in can use value network to estimate the value of a state (trained from expert data as in AlphaGo or pure simulation data as in AlphaZero)

Value network

Backpropagation

Like that in Minimax search

Outline

Sequential Games and Extensive-Form Representations

Solving Complete-Information Games

Solving Incomplete-Information Games

How to Represent a Strategy/Policy Here?

Policy representation for player $i \in \{A, B\}$

≻ For each information set I_i , *i* uses a mixed strategy $\sigma_i[I_i] \in \Delta(A(I_i))$

- $\sigma_i[I_i](a) = \text{prob of taking action } a$
- This is not a trivial statement, since a mixed strategy generally should be a distribution over all possible move combinations
 - Recall the (b_1, b_2) action in matrix representation
 - [Kuhn, 1953] shows that it is *without loss* to consider the above policies, which decompose joint moves into a randomized move at each information set
 - Need to assume every player remembers all the past ("perfect recall")

Policy Re-Formulation in Sequence-form

Policy representation for player $i \in \{A, B\}$

≻ For each information set I_i , *i* uses a mixed strategy $\sigma_i[I_i] \in \Delta(A(I_i))$

- $\sigma_i[I_i](a) = \text{prob of taking action } a$
- ✓ Prob (a sequence of actions) = $\Pi_{a \text{ in sequence}} \sigma_i(a)$
- $\checkmark\,$ Above policy can be equivalently represented as probabilities over all sequences

 \Rightarrow any policy induce a distribution over sequences

 \Leftarrow any distribution over sequence induces a policy like above

For example:

$$\sigma_A[I_A](a_3) = \frac{\Pr(a_1, a_3)}{\Pr(a_1, a_3) + \Pr(a_1, a_4) + \Pr(a_1, a_5)}$$

Hence, Can Solve Small Games by LPs

- Representing each player's mixed strategy as probabilities over that player's action sequence (at most #nodes many variables)
- > Expected utilities can be written as linear functions of these probabilities
- > Can be solved by LPs similar to that of the matrix form

Naturally, everything here applies to complete-information EFGs as well as they are special cases

What About Large Games Like Pokers

> LP approaches do not work any more, since #variables too large

- Not easy to extend previous tree search methods, with information set and randomized actions
 - Note: no need to randomize in complete-info EFTs
- Practically successful approaches are based on no-regret learning

The Core Idea

> When game tree is extremely large...

- No hope to compute probabilities for each action sequence in the tree
- Hence, can only optimize "local" moves i.e., optimizing the mixed strategy $\sigma_i[I_i]$ before for each information set I_i
- However, regret of a policy is a global notion question is, how to ensure each local move reduces "global regret"

The Core Idea

- Core idea is regret decomposition decomposing total regret into (hopefully) the sum of "local regrets" for each local moves
 - Key is to find a notion of "local regret", the sum of which upper bounds total regret
 - One choice is CounterFactual Regret (CFR) for each local move
- Suppose we can do so... we basically decomposed policy design to each local move, which is much more manageable
 - You can run any no-regret learning algorithm as you liked, just using the right reward value and regret notion
 - MCTS shares similar spirit, but uses very different approaches

Definition of Counterfactual Regrets (CFR)

Defined for each information set I_i

> Suppose the game is played repeatedly for *T* times

- > Player *i* used strategy σ_i^t (i.e., $\sigma_i^t[I_i]$ at info set I_i)
 - Let σ^t denote their joint action profile

Where the term "counterfactual" comes from

 $U_{i}(\sigma, I) = \begin{array}{l} \text{Expected } i \text{'th utility, conditioned on} \\ (1) \text{ all other players play } \sigma_{-i} \text{; and (2)} \\ \text{player } i \text{ plays to reaches } I \end{array}$

$$\frac{\sum_{h \in I} \sum_{z \in Z} \Pr(\text{play reach } h \text{ under } \sigma_{-i}) \Pr(h \to z) u_i(z)}{\Pr(\text{play reach } I \text{ under } \sigma_{-i})}$$

Pr(play reach *I* under σ_{-i})

A local deviation from σ

✓ Policy $\sigma | I_i \rightarrow a$ is the same as σ except that player *i* always plays action $a \in A(I_i)$ at info set I_i

Definition of Counterfactual Regrets (CFR)

Defined for each information set I_i

> Suppose the game is played repeatedly for *T* times

- > Player *i* used strategy σ_i^t (i.e., $\sigma_i^t[I_i]$ at info set I_i)
 - Let σ^t denote their joint action profile

 $U_i(\sigma, I) = \begin{array}{l} \text{Expected } i \text{'th utility, conditioned on} \\ (1) \text{ all other players play } \sigma_{-i} \text{; and (2)} \\ \text{player } i \text{ plays to reaches } I \end{array}$

$$CFR_i(I_i \to a) = \frac{1}{T} \sum_{t=1}^T [U_i(\sigma^t | I \to a, I_i) - U_i(\sigma^t, I_i)] \times Pr(\text{reach } I_i \text{ under } \sigma_{-i})]$$

Regret minimization picks the a to minimize it

Where the term

"counterfactual" comes from

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>