
1

Ø Project presentation is this Thursday
1. 5 min pitch talk for each project

2. Peer graded

Ø HW3: due March 14’th

ØProject report due March 16‘th (Sunday) 5 pm

Plans for Remainder of the Course

DATA 37200: Learning, Decisions, and Limits
(Winter 2025)

Reinforcement Learning from Human Feedback

Instructor: Haifeng Xu

3

ØWhat and Why?

ØProcedures of RLHF

ØRL without Rewards: Direct Preference
Optimization (DPO)

Outline

Many active researches are ongoing; this lecture covers basics

4

Machine learning is

Input token sequence

Large Language Model

0.3

useful

0.2

?

mathematical

computational0.30.2

Pr(next	token	|	input)

sampling super

Language Models (LMs)
Next token prediction in auto-regressive way

5

Machine learning is super

Input token sequence

Large Language Model

0.4

difficult

0.1

?

non-sense
0.5

Pr(next	token	|	input)

An Autoregressive Process

Interesting

Language Models (LMs)
Next token prediction in auto-regressive way

6

Machine learning is super interesting

Input token sequence

Large Language Model

?

An Autoregressive Process

. . .

Ø Mathematical abstraction: 𝑝(𝑦|𝑥)

Ø It predicts the next token/phrase

Language Models (LMs)
Next token prediction in auto-regressive way

7

Major Steps for Building an LLM

ØStep 1 is pre-training – supervised learning over massive text data so
that language model (LM) learns probabilities of next token
• Huge engineering effort to tune billions of parameters of transfer
• Already achieve good performance in GPT2 with ~1B paras [Radford et al.,’19]
• GPT3 with 175B parameters is even better [Brown et al. 2020]

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165

8

Major Steps for Building an LLM

ØStep 1 is pre-training – supervised learning over massive text data so
that language model (LM) learns probabilities of next token

ØLimitations:
1. Need to carefully write your prompts to trigger desired predictions

Passage: Tom Brady…

Prompt
Q: Where was Tom Brady born? A:…

Prompt
Is P(…because the cat is too big) > P(…because the hat is too big)?

The cat couldn’t fit in to the hat because it was too big.
Task: does “it” refer to the “cat” or the “hat”

9

Major Steps for Building an LLM

ØStep 1 is pre-training – supervised learning over massive text data so
that language model (LM) learns probabilities of next token

ØLimitations:
1. Need to carefully write your prompts to trigger desired predictions
2. Bad at reasoning tasks, even simple ones

Large number additions
 543854 + 143865?

The cafeteria has 23 apples. They used 20 apples to make lunch and
bought 6 more. How many apples do they have now?

Answer: 26

This is the time where prompt engineering become really popular;
A representatively well-know idea is “chain of thought”

10

Major Steps for Building an LLM

ØStep 1 is pre-training – supervised learning over massive text data so
that language model (LM) learns probabilities of next token

ØLimitations:
1. Need to carefully write your prompts to trigger desired predictions
2. Bad at reasoning tasks, even simple ones

Large number additions
 543854 + 143865?

The cafeteria has 23 apples. They used 20 apples to make lunch and
bought 6 more. How many apples do they have now?

LLMs will then explain the thinking process, and very often output
correct answer

Can you show your reasoning step by step?

à Interesting “dark art”

11

Major Steps for Building an LLM

ØStep 1 is pre-training – supervised learning over massive text data so
that language model (LM) learns probabilities of next token

ØLimitations:
1. Need to carefully write your prompts to trigger desired predictions
2. Bad at reasoning tasks, even simple ones
3. Clever prompt engineering can work sometimes, but certainly have a limit

Fundamental reason: language modeling ≠ assisting humans

12

Major Steps for Building an LLM

ØStep 2 is to align LLMs with human intents – a successful way is
reinforcement learning from human feedback (RLHF)

Core idea:
ü Introduce rewards to model human preferences over languages
ü Then use rewards to “fine-tune” LLMs towards human’s

preferences via RL

ØThe idea of using RL for language models has been there for a while, but
has been difficult to make it work (LMs are complex)

ØGain more momentum recently due to newer RL algorithms better suited
for LMs (e.g., proximal policy optimization/PPO [Schulman et al. 2017])

https://arxiv.org/pdf/1707.06347

13

ØWhat and Why?

ØProcedures of RLHF [Ouyang et al. 2022]

ØRL without Rewards: Direct Preference
Optimization (DPO)

Outline

https://arxiv.org/pdf/2203.02155

14

Part 1: Formulating the RL Problem

ØGiven prompt 𝑥, we want to predict response 𝑦

ØPre-training already gives us an LLM 𝑝!"(𝑦|𝑥)

ØSuppose human has reward 𝑅(𝑦|𝑥) for prompt 𝑥

ØRLHF goal: find 𝑝#$%(𝑦|𝑥) – a neural network parameterized by 𝜃 – to
better predict 𝑦

𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥𝜃∗ = argmax
#

Expected reward under RL policy

Would not work..

If only maximizing rewards, LMs will output non-sensible sentences, since
world knowledge such as language syntax in 𝑝!"(𝑦|𝑥) was ignored

15

	 −𝛽 ⋅ 𝐾𝐿(𝑝#
$% 𝑦 𝑥 , 𝑝!"(𝑦|𝑥))

Part 1: Formulating the RL Problem

ØGiven prompt 𝑥, we want to predict response 𝑦

ØPre-training already gives us an LLM 𝑝!"(𝑦|𝑥)

ØSuppose human has reward 𝑅(𝑦|𝑥) for prompt 𝑥

ØRLHF goal: find 𝑝#$%(𝑦|𝑥) – a neural network parameterized by 𝜃 – to
better predict 𝑦

𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥

Panelize deviation from pre-trained model 𝑝!"(𝑦|𝑥)

𝜃∗ = argmax
#

16

	 −𝛽 ⋅ 𝐾𝐿(𝑝#
$% 𝑦 𝑥 , 𝑝!"(𝑦|𝑥))

Part 1: Formulating the RL Problem

ØGiven prompt 𝑥, we want to predict response 𝑦

ØPre-training already gives us an LLM 𝑝!"(𝑦|𝑥)

ØSuppose human has reward 𝑅(𝑦|𝑥) for prompt 𝑥

ØRLHF goal: find 𝑝#$%(𝑦|𝑥) – a neural network parameterized by 𝜃 – to
better predict 𝑦

𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥

Panelize deviation from pre-trained model 𝑝!"(𝑦|𝑥)

Recall from earlier lecture: 𝐾𝐿 𝑝#
$%, 𝑝!" = ∑& 𝑝#

$%(𝑦) ⋅ log (!
"#(&)

($%(&)

= 𝔼&∼(!"#(&|+)log
(!
"#(&)

($%(&)

𝜃∗ = argmax
#

17

Part 1: Formulating the RL Problem

ØGiven prompt 𝑥, we want to predict response 𝑦

ØPre-training already gives us an LLM 𝑝!"(𝑦|𝑥)

ØSuppose human has reward 𝑅(𝑦|𝑥) for prompt 𝑥

ØRLHF goal: find 𝑝#$%(𝑦|𝑥) – a neural network parameterized by 𝜃 – to
better predict 𝑦

Recall from earlier lecture: 𝐾𝐿 𝑝#
$%, 𝑝!" = ∑& 𝑝#

$%(𝑦) ⋅ log (!
"#(&)

($%(&)

= 𝔼&∼(!"#(&|+)log
(!
"#(&)

($%(&)

𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!
"#(&)

($%(&)
 ⇔ 𝜃∗ = argmax

#

	 −𝛽 ⋅ 𝐾𝐿(𝑝#
$% 𝑦 𝑥 , 𝑝!"(𝑦|𝑥)) 𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥𝜃∗ = argmax

#

18

Part 1: Formulating the RL Problem

ØGiven prompt 𝑥, we want to predict response 𝑦

ØPre-training already gives us an LLM 𝑝!"(𝑦|𝑥)

ØSuppose human has reward 𝑅(𝑦|𝑥) for prompt 𝑥

ØRLHF goal: find 𝑝#$%(𝑦|𝑥) – a neural network parameterized by 𝜃 – to
better predict 𝑦

𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!
"#(&)

($%(&)

	 −𝛽 ⋅ 𝐾𝐿(𝑝#
$% 𝑦 𝑥 , 𝑝!"(𝑦|𝑥)) 𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥

Ø Need to also take expectation over 𝑥 – omitted here for math cleanness

Ø Challenge is to estimate gradient of objective function – particularly
partial gradient of 𝜃 w.r.t. 𝔼&∼(!"#(&|+) in order to apply chain rule

𝜃∗ = argmax
#

⇔ 𝜃∗ = argmax
#

19

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

𝔼&∼(!"#(&|+) 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!
"#(&)

($%(&)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃 Def of partial derivative

⇔ 𝜃∗ = argmax
#

20

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃

Easy to estimate since it is an expectation
ü Sample a bunch of 𝑦’s
ü Compute empirical mean of #

$%('|))
#)

Def of partial derivative

21

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃

Not easy to estimate
Ø Naïve way (ignoring 𝜃 in (𝑅 as it is not under this term’s #

#)
 consideration)

∇# 	𝔼&∼(!"#(&)	
=𝑅(𝑦) = ∇#@

&

𝑝#
$% 𝑦 ⋅ =𝑅(𝑦)

= ∑& ∇#𝑝#
$% 𝑦 ⋅ =𝑅(𝑦)

Difficult to compute unless enumerating all 𝑦’s

Def of partial derivative

22

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃

Idea: log-derivative trick (basically chain rule [Williams’92])

∇# log(𝑝#
$%(𝑦)) =

∇#𝑝#
$%(𝑦)

𝑝#
$%(𝑦)

⇒ ∇#𝑝#
$% 𝑦 = 𝑝#

$% 𝑦 	∇# log(𝑝#
$%(𝑦))

Then ∇# 	𝔼&∼(!"#(&)	
=𝑅(𝑦) = ∑& ∇#𝑝#

$% 𝑦 ⋅ =𝑅(𝑦)

Def of partial derivative

https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

23

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃

Idea: log-derivative trick (basically chain rule [Williams’92])

∇# log(𝑝#
$%(𝑦)) =

∇#𝑝#
$%(𝑦)

𝑝#
$%(𝑦)

⇒ ∇#𝑝#
$% 𝑦 = 𝑝#

$% 𝑦 	∇# log(𝑝#
$%(𝑦))

Hence ∇# 	𝔼&∼(!"#(&)	
=𝑅(𝑦) = ∑& ∇#𝑝#

$% 𝑦 ⋅ =𝑅(𝑦)

= ∑& 𝑝#
$% 𝑦 	∇# log(𝑝#

$%(𝑦)) ⋅ =𝑅(𝑦)

Def of partial derivative

https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

24

= 𝔼&∼(!"#(&)	 ∇# log(𝑝#
$%(𝑦)) ⋅ =𝑅(𝑦)

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃

Idea: log-derivative trick (basically chain rule [Williams’92])

∇# log(𝑝#
$%(𝑦)) =

∇#𝑝#
$%(𝑦)

𝑝#
$%(𝑦)

⇒ ∇#𝑝#
$% 𝑦 = 𝑝#

$% 𝑦 	∇# log(𝑝#
$%(𝑦))

Hence ∇# 	𝔼&∼(!"#(&)	
=𝑅(𝑦) = ∑& ∇#𝑝#

$% 𝑦 ⋅ =𝑅(𝑦)

= ∑& 𝑝#
$% 𝑦 	∇# log(𝑝#

$%(𝑦)) ⋅ =𝑅(𝑦)

And we know expectations can be, again, estimated from samples

Def of partial derivative

https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

25

= 𝔼&∼(!"#(&)	 ∇# log(𝑝#
$%(𝑦)) ⋅ =𝑅(𝑦)

Policy Gradient

ØWe need to calculate (ignoring 𝑥 for now)

∇# 𝔼&∼(!"#(&)	
=𝑅(𝑦|𝜃) where =𝑅 𝑦 = 𝑅 𝑦 𝑥 − 𝛽 ⋅ log (!

"#(&)
($%(&)

=
𝜕𝔼&∼(!"#(&)	

=𝑅(𝑦|𝜃)

𝜕𝜃
+ 𝔼&∼(!"#(&)

𝜕 =𝑅(𝑦|𝜃)
𝜕𝜃

Idea: log-derivative trick (basically chain rule [Williams’92])

∇# log(𝑝#
$%(𝑦)) =

∇#𝑝#
$%(𝑦)

𝑝#
$%(𝑦)

⇒ ∇#𝑝#
$% 𝑦 = 𝑝#

$% 𝑦 	∇# log(𝑝#
$%(𝑦))

Hence ∇# 	𝔼&∼(!"#(&)	
=𝑅(𝑦) = ∑& ∇#𝑝#

$% 𝑦 ⋅ =𝑅(𝑦)

= ∑& 𝑝#
$% 𝑦 	∇# log(𝑝#

$%(𝑦)) ⋅ =𝑅(𝑦)

And we know expectations can be, again, estimated from samples

Ø This illustrates basic principles

Ø Practical implementation usually uses a fancier variant called
PPO, and requires very careful engineering

Def of partial derivative

https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

26

Part 2: Learning Rewards over Languages

ØObjective: learn a reward model 𝑅𝑀(𝑦|𝑥) from human data that assigns
a reward to each response 𝑦

ØChallenges?

Let’s say we want to evaluate summary of a news

A winter storm hit Chicago.
There was heavy wind and
snow, but no damage is
caused

Chicago has strong
facilities and is resilient
to snow storms

A large storm hit
Chicago, resulting in
massive snow and
freezing weather

𝑅 𝑦! = 3 𝑅 𝑦" = 2.4 𝑅 𝑦# =?

Then we do supervised learning!

27

Part 2: Learning Rewards over Languages

ØObjective: learn a reward model 𝑅𝑀(𝑦|𝑥) from human data that assigns
a reward to each response 𝑦

ØChallenge: eliciting direct reward value is very noisy

ØOne idea: elicit comparison/ordinal feedback

A winter storm hit Chicago.
There was heavy wind and
snow, but no damage is
caused

Chicago has strong
facilities and is resilient
to snow storms

A large storm hit
Chicago, resulting in
massive snow and
freezing weather

𝑅 𝑦! = 3 𝑅 𝑦" = 2.4 𝑅 𝑦# =?

28

Part 2: Learning Rewards over Languages

ØObjective: learn a reward model 𝑅𝑀(𝑦|𝑥) from human data that assigns
a reward to each response 𝑦

ØChallenge: eliciting direct reward value is very noisy

ØOne idea: elicit comparison/ordinal feedback

A winter storm hit Chicago.
There was heavy wind and
snow, but no damage is
caused

Chicago has strong
facilities and is resilient
to snow storms

A large storm hit
Chicago, resulting in
massive snow and
freezing weather

𝑦! 𝑦" 𝑦#

Instead of eliciting reward value, you ask which one is better (i.e., wins)?

ØWhy? Preferences are less noisy, yet still descriptive about underlying reward

ØWidely studied in behavioral economics, known as revealed preference

Ø In statistics, this is the idea of logistic regression

≻ ≻

29

Part 2: Learning Rewards over Languages

ØFrom comparison to rewards: the Bradley-Terry [1952] model

A winter storm hit Chicago.
There was heavy wind and
snow, but no damage is
caused

Chicago has strong
facilities and is resilient
to snow storms

A large storm hit
Chicago, resulting in
massive snow and
freezing weather

𝑦! 𝑦" 𝑦#≻ ≻

𝜎 𝑅𝑀	 𝑦./0 	− 𝑅𝑀	 (𝑦1234)𝐿𝑜𝑠𝑠	 = 	−𝔼 &&'(,&)*+, ,	+ ∼7	log
1
1
	 .	

This has familiar flavor to logistic regression, though different

30

A winter storm hit Chicago.
There was heavy wind and
snow, but no damage is
caused

Chicago has strong
facilities and is resilient
to snow storms

A large storm hit
Chicago, resulting in
massive snow and
freezing weather

𝐿𝑜𝑠𝑠	 = 	−𝔼 &&'(,&)*+, ,	+ ∼7	log
1
1
	 .	

Part 2: Learning Rewards over Languages

ØFrom comparison to rewards: the Bradley-Terry [1952] model

𝑦! 𝑦" 𝑦#≻ ≻

𝜎 𝑅𝑀	 𝑦./0 	− 𝑅𝑀	 (𝑦1234)𝜔𝜔(𝜔)

In practice, 𝑅𝑀	is a NN with parameter 𝜔

You find 𝜔	by minimizing above loss

31

RLHF: Putting it Together, and It Does Work!

Step 1: instruction
fine-turning (IFT)
Ø Supervised learning,

like pre-training, but
with more task-
specific data

Ø No rewards or RL
involved

Figure cited from [Ouyang et al., 2020]

32

RLHF: Putting it Together, and It Does Work!

Figure cited from [Ouyang et al., 2020]

33

RLHF: Putting it Together, and It Does Work!

[Stiennon et al., 2020]

34

RLHF: Putting it Together, and It Does Work!

35

RLHF: Putting it Together, and It Does Work!

Ø As we know, ChatGPT is even more amazing
Ø We do not know exactly how OpenAI developed it, but they have two paras…

36

ØWhat and Why?

ØProcedures of RLHF

ØRL without Rewards: Direct Preference
Optimization (DPO) [Rafailov et al. 2022]

Outline

https://arxiv.org/pdf/2305.18290

37

What Does DPO Do?

Merging these into a single step – directly
learn from comparison preference

38

What Does DPO Do?

Merging these into a single step – directly
learn from comparison preference

Advantages

ü Less work – who does not like it?
• Much simpler to implement

ü Performance-wise: more stable and much lightweight
• Learning reward model is difficult and RL training can be very

unstable

ü Hence more and more models these days are trained by DPO

39

ØRecall RL objective

Core idea is a re-formulation of the RL objective, which turns out to
only have comparison preferences, but no rewards!

max
("#

	 −𝛽 ⋅ 𝐾𝐿(𝑝$% 𝑦 𝑥 , 𝑝!"(𝑦|𝑥)) 𝔼&∼("#(&|+) 𝑅 𝑦 𝑥

This optimization problem turns out to have a closed-form optimal solution
(due to nice properties of KL)

𝑝$% 𝑦 𝑥 =
1

𝑍 𝑥
𝑝!" 𝑦 𝑥 exp

1
𝛽
𝑅(𝑦|𝑥)

⇒ 	 𝑅 𝑦 𝑥 = 𝛽 log
𝑝$% 𝑦 𝑥
𝑝!" 𝑦 𝑥

+ 𝛽 log 𝑍(𝑥)
Rearrange to get 𝑅 as
a function of RL policy

40

ØRecall RL objective

Core idea is a re-formulation of the RL objective, which turns out to
only have comparison preferences, but no rewards!

max
("#

	 −𝛽 ⋅ 𝐾𝐿(𝑝$% 𝑦 𝑥 , 𝑝!"(𝑦|𝑥)) 𝔼&∼("#(&|+) 𝑅 𝑦 𝑥

This optimization problem turns out to have a closed-form optimal solution
(due to nice properties of KL)

𝑝$% 𝑦 𝑥 =
1

𝑍 𝑥
𝑝!" 𝑦 𝑥 exp

1
𝛽
𝑅(𝑦|𝑥)

⇒ 	 𝑅 𝑦 𝑥 = 𝛽 log
𝑝$% 𝑦 𝑥
𝑝!" 𝑦 𝑥

+ 𝛽 log 𝑍(𝑥)
Rearrange to get 𝑅 as
a function of RL policy

Recall BT model Pr 𝑦8 ≻ 𝑦9 = 𝜎(𝑅(𝑦8|𝑥) − 𝑅 𝑦9 𝑥)

⇒ Pr 𝑦8 ≻ 𝑦9 = 𝜎(𝛽 log
𝑝$% 𝑦8 𝑥
𝑝!" 𝑦8 𝑥

− 𝛽 log
𝑝$% 𝑦9 𝑥
𝑝!" 𝑦9 𝑥

)

41

ØDPO simply maximizes the log-likelihood of winning over comparison data
(like the objective for learning reward model)

Core idea is a re-formulation of the RL objective, which turns out to
only have comparison preferences, but no rewards!

Recall BT model Pr 𝑦8 ≻ 𝑦9 = 𝜎(𝑅(𝑦8|𝑥) − 𝑅 𝑦9 𝑥)

⇒ Pr 𝑦8 ≻ 𝑦9 = 𝜎(𝛽 log
𝑝$% 𝑦8 𝑥
𝑝!" 𝑦8 𝑥

− 𝛽 log
𝑝$% 𝑦9 𝑥
𝑝!" 𝑦9 𝑥

)

𝐿𝑜𝑠𝑠7!: 𝑝#
$% = −𝔼(&-≻&.,+)∼7 log 𝜎 𝛽 log

𝑝#
$% 𝑦8 𝑥
𝑝!" 𝑦8 𝑥

− 𝛽 log
𝑝#
$% 𝑦9 𝑥
𝑝!" 𝑦9 𝑥

That is, through closed-form solution of opt policy, we removed rewards in
objective, and get an RL objective directly as a function of policy 𝑝#$%

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

