Announcements

> All course materials will be on Course \Website, so no
need to worry about Canvas for now

» Frederic’'s OH is Tue 4:30 to 5:30 pm

» Haifeng’'s OH is Thur 4 to 5 pm

https://frkoehle.github.io/data37200-w2025/

Announcements

A relater course from TTIC

TTIC 44000 - Special Topics: People, Society, and Algorithms

50 Units

This course considers designing and analyzing algorithms with a focus on explicitly taking consideration of
people and society. The course covers selected topics in this area such as data elicitation, crowdsourcing,
causal inference, etc., including recent research. The course will put an emphasis on theoretical principles
underlying problems in these domains, including derivations and proofs of theoretical guarantees. Some
application-specific considerations and directions will also be discussed as case studies. As this is an
interdisciplinary field, we will also touch upon literature in psychology and economics that study the
behavior of people.

Prerequisites: Knowledge of basic probability and linear algebra.

Topics include:

¢ Incentives: strictly proper scoring rules, Bayesian truth serum

Crowdsourcing: learning from pairwise comparisons, crowdsourced labeling, parametric and non-
parametric models and their relations, message-passing algorithms

Causal inference: randomized controlled trials, experimental design, interference
Fairness

Applications: recommendation systems, peer review

DATA 37200: Learning, Decisions, and Limits
(Winter 2025)

Upper Confidence Bound (UCB) Algorithm

Instructor: Haifeng Xu

Outline

» First (Suboptimal) Attempt
» The UCB Algorithm

» Proving Regret Bound of UCB

Disclaimer

In this lecture, and likely many following ones...

We often ignore lower order terms and constant terms in our
derivations, and use big 0, 0, () notations

- Mainly for clarity of argument, but all derivations are rigorous

- Very typical in computing research/analysis

- The argument is that once parameters are very large, lower order
terms do not matter much (v/T vs 5logT)

- On technical side, it frees you from unimportant details and let you
focus on major factors

Recap: Stochastic Multi-Armed Bandits (MAB)

k: T ~ Dk

» Asetof k arms, denoted as [k] = {1,2,:-, k}

» Pulling arm i once generates a random reward r; drawn from o-sub-
Gaussian distribution D;

» Algorithm designer plays for T rounds, and needs to decide which
arm to pull to maximize your expected reward

Round 1 2 san t aas T Goal:

Algorithm’s ., : T max E[X1_; 7]
@ . l l l l il...iT
§8% s choice o

Recap: Stochastic Multi-Armed Bandits (MAB)

v
k: T ~ Dk

Uk

Useful notations:

> let u; = E[R;], ¥ = maxy; and i* = arg max y; is the optimal arm
LE[K] 1E[K]

» Let A; = u; — u;~ denote arm i's suboptimality gap

» Learner does not know y;’s, D;’'s, and A;’s
» For this lecture, assume learner knows T

A Natural First Attempt

Q1: What is your most natural first attempt to solve this problem?

»> Well, we want to find largest u;, but do not know it

» A natural idea is to learn the u;’s to certain precision, and then pick
the largest one

« |.e., learning - then decisions (disentangled)

« A well-known algorithm called Explore Then Commit (ETC)

A Natural First Attempt

Q2: What's a natural algorithm to learn all u;’s?

» D;’s are independent, and we want to learn its mean y;
» Can independently sample from D; by pulling arm i repeatedly

» Nothing is known about y;, D;, A;

The most natural idea is to take n sample from each D;,
and use empirical mean as an estimation of y;!

A Natural First Attempt

= =y
1 7”1~D1 k:T'k"’Dk
ity Uk
. N\

The Explore Then Commit (ETC) Algorithm
Algorithm parameter: n (satisfying kn < T)

1. (Explore Phase) For each arm i, pull it n times to draw n 1.1.D.
reward samples, and let i1; be the average of these n rewards

2. (Commit Phase) Forround t = kn+ 1,---,T, pullarm © = arg rrelaX[Ii
l

Sy,

10

Analysis of ETC

Challenge: needs to be smart about parameter n

> If too large, we may waste too much time learning in Step 1

> If too small, we may have large estimation error, hence commit
to a very sub-optimal arm

The best n can be found by analyzing these two competing factors

4 The Explore Then Commit (ETC) Algorithm A

Algorithm parameter: n (satisfying kn < T)

1. (Explore Phase) For each arm i, pull it n times to draw n 1.1.D.
reward samples, and let i1; be the average of these n rewards

2. (Commit Phase) Forroundt = kn+1,---,T, pullarm 7 = arg rrelaXﬂi
l

Sy,

11

Analysis of ETC

Challenge: needs to be smart about parameter n

> If too large, we may waste too much time learning in Step 1

> If too small, we may have large estimation error, hence commit
to a very sub-optimal arm

The best n can be found by analyzing these two competing factors

1. Concentration inequality for o-sub-Gaussian - estimation error as a

function of #samples n
2log T
ul <o j 5l)>1-2 /T?

Pr<
n

n
i=17Ti

n

12

Analysis of ETC

Challenge: needs to be smart about parameter n
» If too large, we may waste too much time learning in Step 1
> If too small, we may have large estimation error, hence commit

to a very sub-optimal arm

The best n can be found by analyzing these two competing factors

1. Concentration inequality for o-sub-Gaussian - estimation error as a

function of #samples n
2log T
ul <o j 5l)>1-2 /T?

n
i=17Ti

Pr

n n

2. Regret comes from two sources

Regret from exploration + Regret from committing to suboptimal arm

k
=1 Ain + , 2log T
A; is the regret when exploring i ’ n

X(T — kn) =

Analysis of ETC

Challenge: needs to be smart about parameter n
» If too large, we may waste too much time learning in Step 1

> If too small, we may have large estimation error, hence commit
to a very sub-optimal arm

pr+ Ly = A where I, = ¢ /ZI(X”T is the confidence length

by our choice of 7 in Exploitation phase

\Y

Hi
> Uix— ly with probability at least 1 — 4/T? by union bound

Regret from exploration + Regret from committing to suboptimal arm

k
=1 Ain + , 2log T
A; is the regret when exploring i ’ n

X(T — kn) %

Analysis of ETC

Challenge: needs to be smart about parameter n
» If too large, we may waste too much time learning in Step 1

> If too small, we may have large estimation error, hence commit
to a very sub-optimal arm

pr+ Ly = A where I, = ¢ /ZI(X”T is the confidence length

i by our choice of 7 in Exploitation phase

\Y
=

> Uix— ly with probability at least 1 — 4/T? by union bound

regret per round

Regret from exploration + Regretfrom committing to suboptimal arm

éc=1 Ain + \

A; is the regret when exploring i n

X(T — kn) >

Analysis of ETC

To conclude the analysis:
with probability at least 1 — 4/T?2, we have

Regret; < XS Am + 25 2log T

X(T — kn)

2log T
n

< Ckn + 20 XT

« Assume all A;’s are upper bounded by constant C
« Will think of T > k (otherwise, less interesting situations)

16

Analysis of ETC

To conclude the analysis:
with probability at least 1 — 4/T?2, we have

Regret; < Y, Am + 25 2log T (T — kn)
n

2log T
n

= Regret; < [Ck + 20,/2log T|xT?/® By letting n = T2/3

XT

< Ckn + 20

2
=0 ([k + \/log T T§) Re-writing in Big-O notation

Remark:

> The choice of n = T?/3 is not the exactly (though close to) the best, but it
does achieve the best order of regret for ETC

» We use such tricks very often to trade exactness for cleaner analysis,

without caring about constant value difference — beauty of big-O notation!
17

Analysis of ETC

To conclude the analysis:
with probability at least 1 — 4/T?, we have

Regret; < Y5, An +

2log T
n

= Regret; < [Ck + 20./2log T|xT?/3

=0 ([k + \/logT T%)

< Ckn + 20 XT

log T

X(T — kn)

By letting n = T?/3

Re-writing in Big-O notation

18

Analysis of ETC

To conclude the analysis:
with probability at least 1 — 4/T?, we have

Regret; < XS Am + 25 2log T

X(T — kn)

2log T
n

< Ckn + 20 XT

= Regret; < [Ck + 20,/2log T|xT?/® By letting n = T2/3

2
=0 ([k + \/log T T§) Re-writing in Big-O notation

with probability at most 4/T?
» We may have very bad luck, and picked a very bad arm suffering
constant regret each round, leading to at most TC regret in total

> But accounting for its < 4/T? probability, this in expectation is 0(C)

regret which is a constant 19

Analysis of ETC

2
Theorem: ETC algorithm suffers O ([k + \/log T TE) regret for any MAB
instance.

20

Analysis of ETC

2
Theorem: ETC algorithm suffers O ([k + \/log T TE) regret for any MAB
instance.

Question: Can we do better than such a disentangled algorithm that
first learn (i.e., explore) and then decides/commits (i.e., exploit)?

Ans:
> Yes, but we need to blend exploration and exploitation together

» Arepresentative and foundational algorithm is UCB that achieves regret

logT
Regretr = O z
A;

3

» This bound depends on T logarithmically, and also depends on gaps A;
« hence called gap-dependent bound
« though the UCB algorithm itself does not depend on knowledge of A;’s

21

Analysis of ETC

2
Theorem: ETC algorithm suffers O ([k + \/log T TE) regret for any MAB
instance.

Question: Can we do better than such a disentangled algorithm that
first learn (i.e., explore) and then decides/commits (i.e., exploit)?

Ans:
> Yes, but we need to blend exploration and exploitation together

» Arepresentative and foundational algorithm is UCB that achieves regret

log T Can be converted to gap-
z A; independent bound O (/kT logT)

» This bound depends on T logarithmically, and also depends on gaps A;
« hence called gap-dependent bound
« though the UCB algorithm itself does not depend on knowledge of A;’s

Regret; = 0(

3

22

Outline

» First (Suboptimal) Attempt
» The UCB Algorithm

» Proving Regret Bound of UCB

23

In What Situations Is ETC Not Good?

»>When one arm is significantly better than another

- ETC was “too obsessed” with learning every arm accurately, and did
not realize that we could have discarded obviously bad arms

- (reflecting a key difference between learning decision and maximizing
accuracy)

- The Upper Confidence Bound (UBC) algorithm employs an elegant
way to optimize this tradeoff

Arm 1

{ Arm 2

Once we detected this case, no need to waste
further (highly sub-optimal) pulls to learn about arm 2

24

The Upper Confidence Bound (UCB) Algorithm

First things first, what is that (upper) confidence bound?

Comes from concentration inequality

- Given n sampled rewards ry, -+, r;, from any arm with mean y and o-
sub-Gaussian reward distribution, we have

Pr(lﬁ—ul <o /log:/5> >1-25 where, = 2=

log1/é6

« Denotel, =0 . S0 with probability at least 1 — 26, we have

1,

pe =1Ly i+ L]

25

The Upper Confidence Bound (UCB) Algorithm

First things first, what is that (upper) confidence bound?

Comes from concentration inequality

- Given n sampled rewards ry, -+, r;, from any arm with mean y and o-
sub-Gaussian reward distribution, we have

Pr(lﬁ—ul <o /log:/5> >1-25 where, = 2=

log1/é6

. S0 with probability at least 1 — 26, we have

« Denotel,, =¢
pe =1Ly i+ L]

- [+ 1L, is called the upper confidence bound, .
which is fully calculable from sampled rewards l {1

« Relatedly, [— L, g + L] is called the
confidence interval of u

26

The Upper Confidence Bound (UCB) Algorithm

First things first, what is that (upper) confidence bound?

Comes from concentration inequality

- Given n sampled rewards ry, -+, r;, from any arm with mean y and o-
sub-Gaussian reward distribution, we have

Pr(lﬁ—ul <o /log:/5> >1-25 where, = 2=

log1/é6

. S0 with probability at least 1 — 26, we have

« Denotel,, =¢
pe =1Ly i+ L]

- [+ 1L, is called the upper confidence bound, .
which is fully calculable from sampled rewards l {1

« Relatedly, [— L, @ + ;] is called the
confidence interval of u
Guess what this is called?.—"
Lower confidence bound 27

The Upper Confidence Bound (UCB) Algorithm

4 The Upper Confidence Bound (UCB) Algorithm A

Parameter: 6
1. Initialization: n; = 0 foreach arm i € [n]

2. Forroundt=1,2---,T

2.1. pull the arm i = arg max ucb;(n;: 6) that has largest ucb (if
l

any, ties are broken arbitrarily)
_ 3.2 update n;c < n; + 1, and update ucb;¢(n;:; &) -

For any arm i, let n; = #rounds arm i is pulled. Then define UCB as

0.0) nl-=0

)

b;(n;;6) =4 -
uc l(Tll) Mi+0'\/log1/6

i

,Tll’>0

The Upper Confidence Bound (UCB) Algorithm

-~

o

The Upper Confidence Bound (UCB) Algorithm

Parameter: 6
1.
2.

Initialization: n; = 0 for each arm i € [n]

Forroundt=1,2---,T

2.1. pull the arm i* = arg maxucb;(n;: §) that has largest ucb (if

i€[k]
any, ties are broken arbitrarily)

3.2 update n;c < n;c + 1, and update ucb;c(n;t; §)

~

Theorem: The regret of UCB with parameter § = 1/T? is upper

bounded as follows:

log(T)

A;

)

29

The Upper Confidence Bound (UCB) Algorithm

Remarks about UCB.

» The first k pulls will be arm 1, 2, ..., k has an arm with 0 pull has o UCB

> In short, the algorithm uses UCB to guide choices and simply pick the
one with largest UCB

» Also called optimism in the face of uncertainty (OFU) principle

» Why UCB is a good idea for MAB

« Alarge UCB must be due to either being pulled/exploited too little
or large average reward

For any arm i, let n; = #rounds arm i is pulled. Then define UCB as

0, n; = 0
b .;5 =< _
uc l(?’ll) i +O_\/log1/6

i

,nl->0

30

The Upper Confidence Bound (UCB) Algorithm

Remarks about UCB.

» The first k pulls will be arm 1, 2, ..., k has an arm with 0 pull has o UCB

> In short, the algorithm uses UCB to guide choices and simply pick the
one with largest UCB

» Also called optimism in the face of uncertainty (OFU) principle

» Why UCB is a good idea for MAB
« Alarge UCB must be due to either being pulled/exploited too little
or large average reward
« Hence UCB nicely blends exploration and exploitation together

For any arm i, let n; = #rounds arm i is pulled. Then define UCB as

00)

b .;5 =<
uc l(Tll) Mi+0'\/log1/6

i

n; =

,Tll’>0

31

Outline

» First (Suboptimal) Attempt
» The UCB Algorithm

» Proving Regret Bound of UCB

&2

Step |: Understanding Where Regret Comes From

>Recall u* = rg[z}g](u; is the mean of the best arm i*
l

»>Would have 0 regret if we always pulled i*...so whenever we
pulled some i + i* once, we sufferregret A; = u* — y;

Lemma 1 (Regret Decomposition): Let N; denote the total number of
times arm i is pulled by any algorithm for MAB. Then the algorithm’s

regret satisfies
Regret = [[Zie[k],iii* AN |

Proof: obvious from above explanations.

Challenges in remaining analysis — each N; is a random
variable, how do we upper bound its expected value?

33

Step 2: ldentifying Good and Bad Events

»Randomness gives rise to a lot of situations/events — clearly,
bad event may happen

- E.g., with tiny probability, we may end up always pulling a bad arm

Core idea: we want to separately analyze good and bad events
and hopefully show that bad events have very low probability

34

Step 2: Identifying Good and Bad Events

Definition: Define (random) good event E; as “after pulling arm I; at
round t, arm I;’s true mean is within its confidence interval”. That is,

. - 28log1/6
E; _{rl"“'rNIt'l'ult_ﬂltl Sa\/ 5 }
t

Lemma 2: for any t, Pr(E;) = 1 — 26.

| know this —
concentration

inequality!

Caveats
» E,isaboutry, -,y

a random variable
» Concentration inequality is only

for a fixed number of samples n Almost, but
trickier, why?

, where N, is

35

Step 2: ldentifying Good and Bad Events

Definition: Define (random) good event E; as “after pulling arm I; at
round t, arm I;’s true mean is within its confidence interval”. That is,

_ - 28log1/6
E; _{rl'“"rNIt'l'ult_MItl Sa\/ 7 }
t

Lemma 2: for any t, Pr(E;) = 1 — 26.

Proof.

» Conditioned on any realized i;, n;,, {R], — uft}:itl is a martingale since
given any history before 7, E(R}, — uf) = 0 always

» Azuma-Hoeffding inequality implies

Pr |fit —,ul-t| < 0\/2810g1/5 ip,n, | =21-26

Tlit

> Taking expectation w.r.t to i, i;, on both sides, we get Pr(E;) > 1 — 26

36

Step 2: ldentifying Good and Bad Events

Definition: Define (random) good event E; as “after pulling arm I; at
round t, arm I;’s true mean is within its confidence interval”. That is,

_ - 28log1/6
E; _{Tlr"‘»TNzt'lﬂlt_ﬂltl Sa\/ 7 }
t

Lemma 2: for any t, Pr(E;) = 1 — 26.

Remark.
» Why we cannot apply standard Hoeffding inequality to {th — uft}

nit
=1
after conditioning on i, n;,”?

" . . n;
> Because conditioning on i, n;,, {R},} " are notL.1.D. samples!
T=

 Be careful that some materials overlooked this subtle issue

Larger n;, > arm i; is pulled more - realized past R{t’s are larger

J

S

Step 2: ldentifying Good and Bad Events

Definition: Define (random) good event E; as “after pulling arm I; at
round t, arm I;’s true mean is within its confidence interval”. That is,

. - 28log1/6
E; _{rl'“"rNIt'l'ult_MItl Sa\/ 5 }
t

Lemma 3: Pr(n_, E,) > 1—2T§

Proof. Let E; denotes complement of E;, we have
Pr(n?zl Et) =1 - Pr(u’lI;:l E_t)
2 1 _ Z:l Pr(E_t)

Notably, this holds even when E;’s
are correlated (and indeed they are)

38

Step 2: ldentifying Good and Bad Events

Definition: Define (random) good event E; as “after pulling arm I; at
round t, arm I;’s true mean is within its confidence interval”. That is,

. - 28log1/6
E; _{rl"“'rNIt'l'ult_ﬂltl Sa\/ 5 }
t

Lemma 3: Pr(n_, E,) > 1—2T§

Proof. Let E; denotes complement of E;, we have
Pr(nfz1 E) =1 — Pr(Uj; Ey)
>1 — X Pr(Ey)
>1 —2T§
Hence, setting § = 1/T?2, all

good events simultaneously
happen with probability > 2/T

39

Step 3: Bounding Regret under Good Events

»Now, we focus on situations where all E,’s happen, i.e., NI_; E;

>S3ince E; is about the pulled arm I;, and this is the only arm at
round t whose confidence interval could possibly changes

- under N{_, E;, every arm i’s mean is always within
its confidence interval throughout the entire algorithm

40

Step 3: Bounding Regret under Good Events

4 2 lOg(l/(S)

Lemma 4: Under event n]_, E;, Pr (N (A2

+1)=1foranyi¢i*

Prove by contradiction: Arm it Arm i

. 2 log(1/8) 2 log(1/8)
» Suppose N; > 40 ()2 +1,and let N = [4 22

» We must have pulled arm i when its N; = N M*{
» Hence we have I Hi
log1/6
UCbl(N|5) = ﬁi + o 5 /
N
log(1/8
1, + A2 Plugging in N > 402 O(gA(l)/z)
e = Baf ; or equivalently, A; > 20 /logNl/‘S
log1/6
<g-o |04y,

N
41

Step 3: Bounding Regret under Good Events

4 2 10g(1/5)

Lemma 4: Under event n]_, E;, Pr (N (A2

+1)=1foranyi¢i*

Prove by contradiction: Arm it Arm i

> Suppose N; > 4¢2 lo(g(l)/f) +1,and let N = [4 2 lo(gA(l)/f) ucb
» We must have pulled arm i when its N; = N M*{
» Hence we have I Hi
Icb
log1/6
UCbl(N|5) = ﬁi + o 5 /
N L . ,
So it is impossible that i’'s ucb can
_ log1/6 be larger than i*’s, if N; = N.
< Ui — N + Ai

i By definition of lower confidence
= lcby(N10) + 1" — 1y bgund and A,

< u* <ucbi(Ni+|6) When in event n]_, E,
42

(Final) Step 4: Putting Everything Together

Regret = E [X ey izic AiNi] By regret decomposition
= E |Xicrpinis AiNi | N[y E¢|x Pr(n{_; Et)

+ E [Zie 1izi QilN; | U=y Et]x Pr(Ui_, E;)

< Yierpinic DiX [4 2 lo(g(j)/f) + 1] + CTX28T

" \

By lemma 4, N; is surely at
2 log(1/6)
407 28 4 1]

By lemma 3, the probably
some bad event happens
is at most 26T

most [

43

(Final) Step 4: Putting Everything Together

Regret = E [X ey izic AiNi] By regret decomposition
= E |Xicrpinis AiNi | N[y E¢|x Pr(n{_; Et)

+ E [Zie 1izi QilN; | U=y Et]x Pr(Ui_, E;)

< Yierpinic DiX [4 2 lof(j)/f) = 1] + CTX268T

< Yieklinic [8 2 log(T) + A,] +2C Pluggingin § = 1/T?

—0 (Z- o log(T)) Computer science way to write it by
ety using Big-O to hide all constants

This is called a gap-dependent regret bound (though running UCB
does not need to know A;’s).

See issues? Very bad if some A; - 0!

44

The Gap-Independent Regret Bound for UCB

Regret = [[Zie[k],iii* AiNi]
= E |Xicqpqinis AiNi | N[y E¢| X Pr(n{_; Er)
+ E [zie Lizir AN | U2, E.|xPr(ul_; E)

1/6)

(8)?

< Vicpiwr A% [407 B2 4+ 1| + cTx26T

: 210g(1/5)
min {40 o+ L, T}

45

The Gap-Independent Regret Bound for UCB

Regret = [[Zie[k],iii* AiNi]
= E |Xicqpqinis AiNi | N[y E¢| X Pr(n{_; Er)
+ E [zie Lizir AN | U2, E.|xPr(ul_; E)

2 108(1/5)
(Ap>

—0 (Zie[k],i:ti* A; X min {m(g;%g), T})

= 0 (Siepi - min {52 T, })

l

< Viepuyini- Dix |40 +1| + cTx26T

= 0(k/TlogT) Caveat: there are tricks to refine last few

steps to sharpen this bound to 0(,/k T logT);

Might be in homework ©

46

Further Remarks

» There are other variants of UCB, some of which have slightly better
bounds than this standard one we analyzed

 However, all important ideas/techniques have been covered

» More generally, UCB is a kind of “index policy”

« Thatis, designing an “index” to measure the value of each arm, and act
purely based on this index

« Such index policies are very useful, and find applications in many other
cool problems such as Pandora’s box, restless bandits

47

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

