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ØAll course materials will be on Course Website, so no 
need to worry about Canvas for now

ØFrederic’s OH is Tue 4:30 to 5:30 pm

ØHaifeng’s OH is Thur 4 to 5 pm

Announcements

https://frkoehle.github.io/data37200-w2025/
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A relater course from TTIC

Announcements



DATA 37200:  Learning, Decisions, and Limits
(Winter 2025)

Upper Confidence Bound (UCB) Algorithm

Instructor:  Haifeng Xu
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Ø First (Suboptimal) Attempt

Ø The UCB Algorithm

Ø Proving Regret Bound of UCB

Outline
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Disclaimer

In this lecture, and likely many following ones… 

We often ignore lower order terms and constant terms in our 
derivations, and use big 𝑂, Θ, Ω notations
• Mainly for clarity of argument, but all derivations are rigorous
• Very typical in computing research/analysis 
• The argument is that once parameters are very large, lower order 

terms do not matter much ( 𝑇 vs 5log 𝑇)
• On technical side, it frees you from unimportant details and let you 

focus on major factors  
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Recap: Stochastic Multi-Armed Bandits (MAB)

. . . 

Ø A set of 𝑘 arms, denoted as 𝑘 = {1,2,⋯ , 𝑘} 
Ø Pulling arm 𝑖 once generates a random reward 𝑟! drawn from 𝜎-sub-

Gaussian distribution 𝐷! 
Ø Algorithm designer plays for 𝑇 rounds, and needs to decide which 

arm to pull to maximize your expected reward

1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$ 

Round 1

Algorithm’s 
choice 𝑖"

2

𝑖#

. . . 𝑡

𝑖%

. . . 𝑇

𝑖&
Goal: 
max
!!,⋯,!"

𝔼[	∑$%&' 𝑟!#] 
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Recap: Stochastic Multi-Armed Bandits (MAB)

. . . 

Ø let 𝜇! = 𝔼[𝑅!], 𝜇∗ = max
!∈[$]

𝜇! 	 and 𝑖∗ = argmax
!∈[$]

𝜇! is the optimal arm

Ø Let Δ! = 𝜇! − 𝜇!∗  denote arm 𝑖’s suboptimality gap
Ø Learner does not know 𝜇! ’s, 𝐷! ’s, and Δ! ’s
Ø For this lecture, assume learner knows 𝑇 

1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$ 

Useful notations:

𝜇" 𝜇# 𝜇$



8

A Natural First Attempt

. . . 
1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$ 
𝜇" 𝜇# 𝜇$

Q1: What is your most natural first attempt to solve this problem?

Ø Well, we want to find largest 𝜇!, but do not know it
Ø A natural idea is to learn the 𝜇! ’s to certain precision, and then pick 

the largest one
• I.e., learning à then decisions (disentangled)
• A well-known algorithm called Explore Then Commit (ETC)
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A Natural First Attempt

. . . 
1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$ 
𝜇" 𝜇# 𝜇$

Q2: What’s a natural algorithm to learn all 𝜇! ’s?

Ø 𝐷! ’s are independent, and we want to learn its mean 𝜇!
Ø Can independently sample from 𝐷! by pulling arm 𝑖 repeatedly
Ø Nothing is known about 𝜇! , 𝐷! , Δ! 

The most natural idea is to take 𝑛 sample from each 𝐷!, 
and use empirical mean as an estimation of 𝜇!!
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A Natural First Attempt

. . . 
1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$ 
𝜇" 𝜇# 𝜇$

The Explore Then Commit (ETC) Algorithm

Algorithm parameter: 𝑛 (satisfying 𝑘𝑛 ≤ 𝑇)

1. (Explore Phase) For each arm 𝑖, pull it 𝑛 times to draw 𝑛 I.I.D. 
reward samples, and let 4𝜇!  be the average of these 𝑛 rewards

2. (Commit Phase) For round 𝑡 = 𝑘𝑛 + 1,⋯ , 𝑇, pull arm ̅𝚤 = argmax
!∈[$]

𝜇̅! 	
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Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit 

to a very sub-optimal arm

The best 𝑛 can be found by analyzing these two competing factors

The Explore Then Commit (ETC) Algorithm

Algorithm parameter: 𝑛 (satisfying 𝑘𝑛 ≤ 𝑇)

1. (Explore Phase) For each arm 𝑖, pull it 𝑛 times to draw 𝑛 I.I.D. 
reward samples, and let 4𝜇!  be the average of these 𝑛 rewards

2. (Commit Phase) For round 𝑡 = 𝑘𝑛 + 1,⋯ , 𝑇, pull arm ̅𝚤 = argmax
!∈[$]

𝜇̅! 	
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Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit 

to a very sub-optimal arm

1. Concentration inequality for 𝜎-sub-Gaussian à estimation error as a 
function of #samples 𝑛  

Pr
∑!+"
, 𝑟!
𝑛

	− 𝜇 ≤ 𝜎
2log	𝑇
𝑛

≥ 1 −2/𝑇#

The best 𝑛 can be found by analyzing these two competing factors
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Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit 

to a very sub-optimal arm

1. Concentration inequality for 𝜎-sub-Gaussian à estimation error as a 
function of #samples 𝑛  

Pr
∑!+"
, 𝑟!
𝑛

	− 𝜇 ≤ 𝜎
2log	𝑇
𝑛

≥ 1 −2/𝑇#

2. Regret comes from two sources

∑!+"
$ Δ!𝑛  

Regret from exploration  +  Regret from committing to suboptimal arm

Δ! is the regret when exploring 𝑖
+

2𝜎
2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

The best 𝑛 can be found by analyzing these two competing factors
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Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit 

to a very sub-optimal arm

∑!+"
$ Δ!𝑛  

Regret from exploration  +  Regret from committing to suboptimal arm

+

≥ 	 𝜇̅!∗	

2𝜎
2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

by our choice of ̅𝚤 in Exploitation phase

≥ 	 𝜇!∗ − 𝑙( with probability at least 1 − 4/𝑇# by union bound 

Δ! is the regret when exploring 𝑖

𝜇 ̅. + 𝑙, ≥ 𝜇̅𝑖	̅ where 𝑙, = 𝜎 #/01	&
,

 is the confidence length
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Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit 

to a very sub-optimal arm

∑!+"
$ Δ!𝑛  

Regret from exploration  +  Regret from committing to suboptimal arm

+

≥ 	 𝜇̅!∗	

2𝜎
2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

by our choice of ̅𝚤 in Exploitation phase

≥ 	 𝜇!∗ − 𝑙( with probability at least 1 − 4/𝑇# by union bound 

regret per round

Δ! is the regret when exploring 𝑖

𝜇 ̅. + 𝑙, ≥ 𝜇̅𝑖	̅ where 𝑙, = 𝜎 #/01	&
,

 is the confidence length
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Analysis of ETC

To conclude the analysis: 
    with probability at least 1 − 4/𝑇#, we have  

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

• Assume all Δ! ’s are upper bounded by constant 𝐶
• Will think of 𝑇 ≫ 𝑘 (otherwise, less interesting situations)

∑!+"
$ Δ!𝑛  + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)
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Analysis of ETC

To conclude the analysis: 
    with probability at least 1 − 4/𝑇#, we have  

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

∑!+"
$ Δ!𝑛  + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

⇒ 	 Regret& ≤ 𝐶𝑘	 + 2𝜎 2log	𝑇 ×𝑇#/4	 By letting 𝑛 = 𝑇#/4

= 𝑂 𝑘	 + log	𝑇 𝑇
#
4 Re-writing in Big-O notation

Remark: 
Ø The choice of 𝑛 = 𝑇#/4 is not the exactly (though close to) the best, but it 

does achieve the best order of regret for ETC
Ø We use such tricks very often to trade exactness for cleaner analysis, 

without caring about constant value difference – beauty of big-O notation!



18

Analysis of ETC

To conclude the analysis: 
    with probability at least 𝟏 − 𝟒/𝑻𝟐, we have  

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

∑!+"
$ Δ!𝑛  + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

⇒ 	 Regret& ≤ 𝐶𝑘	 + 2𝜎 2log	𝑇 ×𝑇#/4	 By letting 𝑛 = 𝑇#/4

= 𝑂 𝑘	 + log	𝑇 𝑇
#
4 Re-writing in Big-O notation
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Analysis of ETC

To conclude the analysis: 
    with probability at least 𝟏 − 𝟒/𝑻𝟐, we have  

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

∑!+"
$ Δ!𝑛  + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

⇒ 	 Regret& ≤ 𝐶𝑘	 + 2𝜎 2log	𝑇 ×𝑇#/4	 By letting 𝑛 = 𝑇#/4

= 𝑂 𝑘	 + log	𝑇 𝑇
#
4 Re-writing in Big-O notation

with probability at most  𝟒/𝑻𝟐
Ø We may have very bad luck, and picked a very bad arm suffering 

constant regret each round, leading to at most T𝐶 regret in total
Ø But accounting for its ≤ 4/𝑇# probability, this in expectation is 𝑂(𝐶) 

regret which is a constant
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Analysis of ETC

Theorem: ETC algorithm suffers 𝑂 𝑘	 + log	𝑇 𝑇
"
#  regret for any MAB 

instance. 
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Analysis of ETC

Theorem: ETC algorithm suffers 𝑂 𝑘	 + log	𝑇 𝑇
"
#  regret for any MAB 

instance. 

Question: Can we do better than such a disentangled algorithm that 
first learn (i.e., explore) and then decides/commits (i.e., exploit)?   

Ans: 
Ø Yes, but we need to blend exploration and exploitation together
Ø A representative and foundational algorithm is UCB that achieves regret

Regret& = 𝑂 Z
!6!∗

log 𝑇
Δ!

Ø This bound depends on 𝑇 logarithmically, and also depends on gaps Δ! 
• hence called gap-dependent bound
• though the UCB algorithm itself does not depend on knowledge of Δ! ’s 
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Analysis of ETC

Theorem: ETC algorithm suffers 𝑂 𝑘	 + log	𝑇 𝑇
"
#  regret for any MAB 

instance. 

Question: Can we do better than such a disentangled algorithm that 
first learn (i.e., explore) and then decides/commits (i.e., exploit)?   

Ans: 
Ø Yes, but we need to blend exploration and exploitation together
Ø A representative and foundational algorithm is UCB that achieves regret

Regret& = 𝑂 Z
!6!∗

log 𝑇
Δ!

Ø This bound depends on 𝑇 logarithmically, and also depends on gaps Δ! 
• hence called gap-dependent bound
• though the UCB algorithm itself does not depend on knowledge of Δ! ’s 

Can be converted to gap-
independent bound 𝑂( 𝑘𝑇 log 𝑇) 



23

Ø First (Suboptimal) Attempt

Ø The UCB Algorithm

Ø Proving Regret Bound of UCB

Outline
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In What Situations Is ETC Not Good?

ØWhen one arm is significantly better than another
• ETC was “too obsessed” with learning every arm accurately, and did 

not realize that we could have discarded obviously bad arms
• (reflecting a key difference between learning decision and maximizing 

accuracy)
• The Upper Confidence Bound (UBC) algorithm employs an elegant 

way to optimize this tradeoff

Arm 1

Arm 2

Once we detected this case, no need to waste 
further (highly sub-optimal) pulls to learn about arm 2 
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The Upper Confidence Bound (UCB) Algorithm

Comes from concentration inequality
• Given 𝑛 sampled rewards 𝑟", ⋯ , 𝑟, from any arm with mean 𝜇 and 𝜎-

sub-Gaussian reward distribution, we have   

First things first, what is that (upper) confidence bound? 

Pr 𝜇̅ − 𝜇 ≤ 𝜎 /01 "/7
,

≥ 1 −2𝛿  where.  𝜇̅ = ∑$%&
' 9$
,

	

• Denote 𝑙, = 𝜎 /01 "/7
,

. So with probability at least 1 − 2𝛿, we have 

𝜇 ∈ [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,]   

𝜇̅
𝜇

𝑙(
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The Upper Confidence Bound (UCB) Algorithm

Comes from concentration inequality
• Given 𝑛 sampled rewards 𝑟", ⋯ , 𝑟, from any arm with mean 𝜇 and 𝜎-

sub-Gaussian reward distribution, we have   

First things first, what is that (upper) confidence bound? 

Pr 𝜇̅ − 𝜇 ≤ 𝜎 /01 "/7
,

≥ 1 −2𝛿  where.  𝜇̅ = ∑$%&
' 9$
,

	

• Denote 𝑙, = 𝜎 /01 "/7
,

. So with probability at least 1 − 2𝛿, we have 

𝜇 ∈ [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,]   

𝜇̅
𝜇

𝑙(

• 𝜇̅ + 𝑙, is called the upper confidence bound, 
which is fully calculable from sampled rewards

• Relatedly, [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,] is called the 
confidence interval of 𝜇
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The Upper Confidence Bound (UCB) Algorithm

Comes from concentration inequality
• Given 𝑛 sampled rewards 𝑟", ⋯ , 𝑟, from any arm with mean 𝜇 and 𝜎-

sub-Gaussian reward distribution, we have   

First things first, what is that (upper) confidence bound? 

Pr 𝜇̅ − 𝜇 ≤ 𝜎 /01 "/7
,

≥ 1 −2𝛿  where.  𝜇̅ = ∑$%&
' 9$
,

	

• Denote 𝑙, = 𝜎 /01 "/7
,

. So with probability at least 1 − 2𝛿, we have 

𝜇 ∈ [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,]   

𝜇̅
𝜇

𝑙(

• 𝜇̅ + 𝑙, is called the upper confidence bound, 
which is fully calculable from sampled rewards

• Relatedly, [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,] is called the 
confidence interval of 𝜇

Guess what this is called?
Lower confidence bound
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The Upper Confidence Bound (UCB) Algorithm

The Upper Confidence Bound (UCB) Algorithm

Parameter: 𝜹
1. Initialization:  𝑛! = 0 for each arm 𝑖 ∈ [𝑛]

2. For round 𝑡 = 1, 2⋯ , 𝑇
2.1. pull the arm 𝑖% = argmax

!∈[$]
ucb! 𝑛!: 𝛿  that has largest ucb (if 

any, ties are broken arbitrarily)
3.2  update 𝑛!) ← 𝑛!) + 1, and update ucb!) 𝑛!) ; 𝛿

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0
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The Upper Confidence Bound (UCB) Algorithm

The Upper Confidence Bound (UCB) Algorithm

Parameter: 𝜹
1. Initialization:  𝑛! = 0 for each arm 𝑖 ∈ [𝑛]

2. For round 𝑡 = 1, 2⋯ , 𝑇
2.1. pull the arm 𝑖% = argmax

!∈[$]
ucb! 𝑛!: 𝛿  that has largest ucb (if 

any, ties are broken arbitrarily)
3.2  update 𝑛!) ← 𝑛!) + 1, and update ucb!) 𝑛!) ; 𝛿

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0

Theorem: The regret of UCB with parameter 𝛿 = 1/𝑇# is upper 
bounded as follows:  

                                   Regret = 𝑂 ∑!∈ $ ,!6!∗
/01 &
;$
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The Upper Confidence Bound (UCB) Algorithm

Remarks about UCB. 

Ø The first 𝑘 pulls will be arm 1, 2, … , 𝑘 has an arm with 0 pull has ∞ UCB
Ø In short, the algorithm uses UCB to guide choices and simply pick the 

one with largest UCB
• Also called optimism in the face of uncertainty (OFU) principle

Ø Why UCB is a good idea for MAB
• A large UCB must be due to either being pulled/exploited too little 

or large average reward  

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0
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The Upper Confidence Bound (UCB) Algorithm

Remarks about UCB. 

Ø The first 𝑘 pulls will be arm 1, 2, … , 𝑘 has an arm with 0 pull has ∞ UCB
Ø In short, the algorithm uses UCB to guide choices and simply pick the 

one with largest UCB
• Also called optimism in the face of uncertainty (OFU) principle

Ø Why UCB is a good idea for MAB
• A large UCB must be due to either being pulled/exploited too little 

or large average reward  
• Hence UCB nicely blends exploration and exploitation together 

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0
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Ø First (Suboptimal) Attempt

Ø The UCB Algorithm

Ø Proving Regret Bound of UCB

Outline
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Step 1: Understanding Where Regret Comes From

ØRecall 𝑢∗ = max
!∈[-]

𝑢! is the mean of the best arm 𝑖∗

ØWould have 0 regret if we always pulled 𝑖∗…so whenever we 
pulled some 𝑖 ≠ 𝑖∗ once, we suffer regret Δ! = 𝜇∗ − 𝜇! 

Lemma 1 (Regret Decomposition): Let 𝑁! denote the total number of 
times arm 𝑖 is pulled by any algorithm for MAB. Then the algorithm’s 
regret satisfies
                                   Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!

Proof: obvious from above explanations. 

Challenges in remaining analysis – each 𝑁! is a random 
variable, how do we upper bound its expected value? 
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Step 2: Identifying Good and Bad Events

ØRandomness gives rise to a lot of situations/events – clearly, 
bad event may happen
• E.g., with tiny probability, we may end up always pulling a bad arm 

Core idea: we want to separately analyze good and bad events 
and hopefully show that bad events have very low probability
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Step 2: Identifying Good and Bad Events

Lemma 2: for any 𝑡, Pr 𝐸% ≥ 1 − 2𝛿.   

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at 
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

I know this – 
concentration 

inequality!

Almost, but 
trickier, why?

Caveats
Ø 𝐸% is about 𝑟", ⋯ , 𝑟<*)  where 𝑁=)  is 

a random variable
Ø Concentration inequality is only 

for a fixed number of samples 𝑛 
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Step 2: Identifying Good and Bad Events

Proof.
Ø Conditioned on any realized 𝑖%, 𝑛!) , 𝑅!)

? − 𝜇!)
?

?+"

,$)  is a martingale since 
given any history before 𝜏, 𝔼 𝑅!)

? − 𝜇!)
? = 0 always

Ø Azuma-Hoeffding inequality implies  

Pr 𝑟̅!) − 𝜇!) ≤ 𝜎 28log 1/𝛿
𝑛!)

𝑖%, 𝑛=) ≥ 1 − 2𝛿

Ø Taking expectation w.r.t to i@, 𝑖=) 	on both sides, we get Pr 𝐸% ≥ 1 − 2𝛿
  

Lemma 2: for any 𝑡, Pr 𝐸% ≥ 1 − 2𝛿.   

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at 
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)
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Step 2: Identifying Good and Bad Events

Remark.
Ø Why we cannot apply standard Hoeffding inequality to 𝑅!)

? − 𝜇!)
?

?+"

,$) 	C, 
after conditioning on 𝑖%, 𝑛=)? 

Ø Because conditioning on 𝑖%, 𝑛=) , 𝑅!)
?
?+"
,$)   are not I.I.D. samples!

• Be careful that some materials overlooked this subtle issue 

Lemma 2: for any 𝑡, Pr 𝐸% ≥ 1 − 2𝛿.   

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at 
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

Larger 𝑛!)  à arm 𝑖% is pulled more à realized past 𝑅!)
? ’s are larger
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Step 2: Identifying Good and Bad Events

Lemma 3: Pr ∩%+"& 𝐸% ≥ 1 − 2𝑇𝛿   

Proof.  Let 𝐸% denotes complement of 𝐸%, we have 

Pr ∩%+", 𝐸% = 1	 − Pr ∪%+"& 𝐸%
≥ 1	 − ∑%+"& Pr 𝐸%  

Notably, this holds even when 𝐸%’s 
are correlated (and indeed they are)

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at 
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)
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Step 2: Identifying Good and Bad Events

Lemma 3: Pr ∩%+"& 𝐸% ≥ 1 − 2𝑇𝛿   

Proof.  Let 𝐸% denotes complement of 𝐸%, we have 

Pr ∩%+", 𝐸% = 1	 − Pr ∪%+"& 𝐸%
≥ 1	 − ∑%+"& Pr 𝐸%  

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at 
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

≥ 1	 − 2𝑇𝛿 

Hence, setting 𝛿 = 1/𝑇#, all 
good events simultaneously 
happen with probability ≥ 2/𝑇 
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Step 3: Bounding Regret under Good Events

ØNow, we focus on situations where all 𝐸$ ’s happen, i.e., ∩$%&' 𝐸$ 

ØSince 𝐸$ is about the pulled arm 𝐼$, and this is the only arm at 
round 𝑡 whose confidence interval could possibly changes

à under ∩$%&' 𝐸$, every arm 𝑖’s mean is always within 
its confidence interval throughout the entire algorithm  
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Step 3: Bounding Regret under Good Events

Arm 𝑖∗ Arm 𝑖

𝜇∗

𝜇!

Lemma 4: Under event ∩%+"& 𝐸%, Pr 𝑁! ≤ 4𝜎# /01 "/7
;$ "

+ 1 = 1 for any 𝑖 ≠ 𝑖∗

Prove by contradiction:

Ø Suppose 𝑁! > 4𝜎# /01("/7)
;$ "

+ 1, and let 𝑁 = 4𝜎# /01("/7)
;$ "

 

Ø We must have pulled arm 𝑖 when its 𝑁! = 𝑁
Ø Hence we have

ucb! N 𝛿 = 𝜇̅! + 𝜎
log 1/𝛿
𝑁

≤ 𝜇̅! + Δ!/2 Plugging in 𝑁 ≥ 4𝜎# /01("/7)
;$ "

or equivalently, Δ! ≥ 2𝜎 /01 "/7
<

= 𝜇̅! − Δ!/2 + Δ!

≤ 𝜇̅! − 𝜎
log 1/𝛿
𝑁

+ Δ!
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< 𝜇∗ < 𝑢𝑐𝑏!∗(𝑁!∗|𝛿)

Step 3: Bounding Regret under Good Events

Lemma 4: Under event ∩%+"& 𝐸%, Pr 𝑁! ≤ 4𝜎# /01 "/7
;$ "

+ 1 = 1 for any 𝑖 ≠ 𝑖∗

Prove by contradiction:

Ø Suppose 𝑁! > 4𝜎# /01("/7)
;$ "

+ 1, and let 𝑁 = 4𝜎# /01("/7)
;$ "

 

Ø We must have pulled arm 𝑖 when its 𝑁! = 𝑁
Ø Hence we have

ucb! N 𝛿 = 𝜇̅! + 𝜎
log 1/𝛿
𝑁

= lcb! 𝑁 𝛿 + 𝜇∗ − 𝜇!
By definition of lower confidence 
bound and Δ!

≤ 𝜇̅! − 𝜎
log 1/𝛿
𝑁

+ Δ!

When in event ∩%+"& 𝐸% 

lcb

ucb

So it is impossible that 𝑖’s ucb can 
be larger than 𝑖∗’s, if 𝑁! = 𝑁.  

Arm 𝑖∗ Arm 𝑖

𝜇∗

𝜇!
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(Final) Step 4: Putting Everything Together

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!  By regret decomposition

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$) 

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$) 

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1  

By lemma 3, the probably 
some bad event happens 
is at most 2𝛿𝑇 

By lemma 4, 𝑁! is surely at 
most 4𝜎# /01 "/7

;$ "
+ 1  

+ 𝐶𝑇×2𝛿𝑇
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(Final) Step 4: Putting Everything Together

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!  By regret decomposition

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$) 

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$) 

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1  

≤ ∑!∈ - ,!/!∗ 8𝜎0
123 '
6%

+ Δ!  + 2𝐶 Plugging in 𝛿 = 1/𝑇#

= 𝑂 ∑!∈ - ,!/!∗
123 '
6%

 Computer science way to write it by 
using Big-O to hide all constants

This is called a gap-dependent regret bound (though running UCB 
does not need to know Δ! ’s).

See issues? Very bad if some Δ! → 0 !

+ 𝐶𝑇×2𝛿𝑇
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The Gap-Independent Regret Bound for UCB

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!  

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$) 

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$) 

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1  + 𝐶𝑇×2𝛿𝑇

min 4𝜎# /01 "/7
;$ "

+ 1, 𝑇  
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The Gap-Independent Regret Bound for UCB

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!  

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$) 

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$) 

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1  + 𝐶𝑇×2𝛿𝑇

= 𝑂 ∑!∈ - ,!/!∗ Δ!×min
123 &/5
6% &

, 𝑇  

= 𝑂 ∑!∈ - ,!/!∗min
123 '
6%

, 𝑇Δ!  

= 𝑂 𝑘 𝑇 log 𝑇  Caveat: there are tricks to refine last few 
steps to sharpen this bound to 𝑂 𝑘	𝑇 log 𝑇 ;
 Might be in homework J 
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Further Remarks

Ø There are other variants of UCB, some of which have slightly better 
bounds than this standard one we analyzed

• However, all important ideas/techniques have been covered 

Ø More generally, UCB is a kind of “index policy”
• That is, designing an “index” to measure the value of each arm, and act 

purely based on this index
• Such index policies are very useful, and find applications in many other 

cool problems such as Pandora’s box, restless bandits
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