
1

ØAll course materials will be on Course Website, so no
need to worry about Canvas for now

ØFrederic’s OH is Tue 4:30 to 5:30 pm

ØHaifeng’s OH is Thur 4 to 5 pm

Announcements

https://frkoehle.github.io/data37200-w2025/

2

A relater course from TTIC

Announcements

DATA 37200: Learning, Decisions, and Limits
(Winter 2025)

Upper Confidence Bound (UCB) Algorithm

Instructor: Haifeng Xu

4

Ø First (Suboptimal) Attempt

Ø The UCB Algorithm

Ø Proving Regret Bound of UCB

Outline

5

Disclaimer

In this lecture, and likely many following ones…

We often ignore lower order terms and constant terms in our
derivations, and use big 𝑂, Θ, Ω notations
• Mainly for clarity of argument, but all derivations are rigorous
• Very typical in computing research/analysis
• The argument is that once parameters are very large, lower order

terms do not matter much (𝑇 vs 5log 𝑇)
• On technical side, it frees you from unimportant details and let you

focus on major factors

6

Recap: Stochastic Multi-Armed Bandits (MAB)

. . .

Ø A set of 𝑘 arms, denoted as 𝑘 = {1,2,⋯ , 𝑘}
Ø Pulling arm 𝑖 once generates a random reward 𝑟! drawn from 𝜎-sub-

Gaussian distribution 𝐷!
Ø Algorithm designer plays for 𝑇 rounds, and needs to decide which

arm to pull to maximize your expected reward

1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$

Round 1

Algorithm’s
choice 𝑖"

2

𝑖#

. . . 𝑡

𝑖%

. . . 𝑇

𝑖&
Goal:
max
!!,⋯,!"

𝔼[∑$%&' 𝑟!#]

7

Recap: Stochastic Multi-Armed Bandits (MAB)

. . .

Ø let 𝜇! = 𝔼[𝑅!], 𝜇∗ = max
!∈[$]

𝜇! 	 and 𝑖∗ = argmax
!∈[$]

𝜇! is the optimal arm

Ø Let Δ! = 𝜇! − 𝜇!∗ denote arm 𝑖’s suboptimality gap
Ø Learner does not know 𝜇! ’s, 𝐷! ’s, and Δ! ’s
Ø For this lecture, assume learner knows 𝑇

1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$

Useful notations:

𝜇" 𝜇# 𝜇$

8

A Natural First Attempt

. . .
1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$
𝜇" 𝜇# 𝜇$

Q1: What is your most natural first attempt to solve this problem?

Ø Well, we want to find largest 𝜇!, but do not know it
Ø A natural idea is to learn the 𝜇! ’s to certain precision, and then pick

the largest one
• I.e., learning à then decisions (disentangled)
• A well-known algorithm called Explore Then Commit (ETC)

9

A Natural First Attempt

. . .
1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$
𝜇" 𝜇# 𝜇$

Q2: What’s a natural algorithm to learn all 𝜇! ’s?

Ø 𝐷! ’s are independent, and we want to learn its mean 𝜇!
Ø Can independently sample from 𝐷! by pulling arm 𝑖 repeatedly
Ø Nothing is known about 𝜇! , 𝐷! , Δ!

The most natural idea is to take 𝑛 sample from each 𝐷!,
and use empirical mean as an estimation of 𝜇!!

10

A Natural First Attempt

. . .
1 2 𝑘: 	𝑟"∼ 𝐷" : 	𝑟#∼ 𝐷# : 	𝑟$ ∼ 𝐷$
𝜇" 𝜇# 𝜇$

The Explore Then Commit (ETC) Algorithm

Algorithm parameter: 𝑛 (satisfying 𝑘𝑛 ≤ 𝑇)

1. (Explore Phase) For each arm 𝑖, pull it 𝑛 times to draw 𝑛 I.I.D.
reward samples, and let 4𝜇! be the average of these 𝑛 rewards

2. (Commit Phase) For round 𝑡 = 𝑘𝑛 + 1,⋯ , 𝑇, pull arm ̅𝚤 = argmax
!∈[$]

𝜇̅! 	

11

Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit

to a very sub-optimal arm

The best 𝑛 can be found by analyzing these two competing factors

The Explore Then Commit (ETC) Algorithm

Algorithm parameter: 𝑛 (satisfying 𝑘𝑛 ≤ 𝑇)

1. (Explore Phase) For each arm 𝑖, pull it 𝑛 times to draw 𝑛 I.I.D.
reward samples, and let 4𝜇! be the average of these 𝑛 rewards

2. (Commit Phase) For round 𝑡 = 𝑘𝑛 + 1,⋯ , 𝑇, pull arm ̅𝚤 = argmax
!∈[$]

𝜇̅! 	

12

Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit

to a very sub-optimal arm

1. Concentration inequality for 𝜎-sub-Gaussian à estimation error as a
function of #samples 𝑛

Pr
∑!+"
, 𝑟!
𝑛

	− 𝜇 ≤ 𝜎
2log	𝑇
𝑛

≥ 1 −2/𝑇#

The best 𝑛 can be found by analyzing these two competing factors

13

Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit

to a very sub-optimal arm

1. Concentration inequality for 𝜎-sub-Gaussian à estimation error as a
function of #samples 𝑛

Pr
∑!+"
, 𝑟!
𝑛

	− 𝜇 ≤ 𝜎
2log	𝑇
𝑛

≥ 1 −2/𝑇#

2. Regret comes from two sources

∑!+"
$ Δ!𝑛

Regret from exploration + Regret from committing to suboptimal arm

Δ! is the regret when exploring 𝑖
+

2𝜎
2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

The best 𝑛 can be found by analyzing these two competing factors

14

Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit

to a very sub-optimal arm

∑!+"
$ Δ!𝑛

Regret from exploration + Regret from committing to suboptimal arm

+

≥ 	 𝜇̅!∗	

2𝜎
2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

by our choice of ̅𝚤 in Exploitation phase

≥ 	 𝜇!∗ − 𝑙(with probability at least 1 − 4/𝑇# by union bound

Δ! is the regret when exploring 𝑖

𝜇 ̅. + 𝑙, ≥ 𝜇̅𝑖	̅ where 𝑙, = 𝜎 #/01	&
,

 is the confidence length

15

Analysis of ETC

Challenge: needs to be smart about parameter 𝑛
Ø If too large, we may waste too much time learning in Step 1
Ø If too small, we may have large estimation error, hence commit

to a very sub-optimal arm

∑!+"
$ Δ!𝑛

Regret from exploration + Regret from committing to suboptimal arm

+

≥ 	 𝜇̅!∗	

2𝜎
2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

by our choice of ̅𝚤 in Exploitation phase

≥ 	 𝜇!∗ − 𝑙(with probability at least 1 − 4/𝑇# by union bound

regret per round

Δ! is the regret when exploring 𝑖

𝜇 ̅. + 𝑙, ≥ 𝜇̅𝑖	̅ where 𝑙, = 𝜎 #/01	&
,

 is the confidence length

16

Analysis of ETC

To conclude the analysis:
 with probability at least 1 − 4/𝑇#, we have

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

• Assume all Δ! ’s are upper bounded by constant 𝐶
• Will think of 𝑇 ≫ 𝑘 (otherwise, less interesting situations)

∑!+"
$ Δ!𝑛 + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

17

Analysis of ETC

To conclude the analysis:
 with probability at least 1 − 4/𝑇#, we have

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

∑!+"
$ Δ!𝑛 + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

⇒ 	 Regret& ≤ 𝐶𝑘	 + 2𝜎 2log	𝑇 ×𝑇#/4	 By letting 𝑛 = 𝑇#/4

= 𝑂 𝑘	 + log	𝑇 𝑇
#
4 Re-writing in Big-O notation

Remark:
Ø The choice of 𝑛 = 𝑇#/4 is not the exactly (though close to) the best, but it

does achieve the best order of regret for ETC
Ø We use such tricks very often to trade exactness for cleaner analysis,

without caring about constant value difference – beauty of big-O notation!

18

Analysis of ETC

To conclude the analysis:
 with probability at least 𝟏 − 𝟒/𝑻𝟐, we have

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

∑!+"
$ Δ!𝑛 + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

⇒ 	 Regret& ≤ 𝐶𝑘	 + 2𝜎 2log	𝑇 ×𝑇#/4	 By letting 𝑛 = 𝑇#/4

= 𝑂 𝑘	 + log	𝑇 𝑇
#
4 Re-writing in Big-O notation

19

Analysis of ETC

To conclude the analysis:
 with probability at least 𝟏 − 𝟒/𝑻𝟐, we have

Regret& ≤	

≤ 	 𝐶𝑘𝑛	 + 2𝜎
2log	𝑇
𝑛

×𝑇

∑!+"
$ Δ!𝑛 + 2𝜎

2log	𝑇
𝑛

×(𝑇 − 𝑘𝑛)

⇒ 	 Regret& ≤ 𝐶𝑘	 + 2𝜎 2log	𝑇 ×𝑇#/4	 By letting 𝑛 = 𝑇#/4

= 𝑂 𝑘	 + log	𝑇 𝑇
#
4 Re-writing in Big-O notation

with probability at most 𝟒/𝑻𝟐
Ø We may have very bad luck, and picked a very bad arm suffering

constant regret each round, leading to at most T𝐶 regret in total
Ø But accounting for its ≤ 4/𝑇# probability, this in expectation is 𝑂(𝐶)

regret which is a constant

20

Analysis of ETC

Theorem: ETC algorithm suffers 𝑂 𝑘	 + log	𝑇 𝑇
"
regret for any MAB

instance.

21

Analysis of ETC

Theorem: ETC algorithm suffers 𝑂 𝑘	 + log	𝑇 𝑇
"
regret for any MAB

instance.

Question: Can we do better than such a disentangled algorithm that
first learn (i.e., explore) and then decides/commits (i.e., exploit)?

Ans:
Ø Yes, but we need to blend exploration and exploitation together
Ø A representative and foundational algorithm is UCB that achieves regret

Regret& = 𝑂 Z
!6!∗

log 𝑇
Δ!

Ø This bound depends on 𝑇 logarithmically, and also depends on gaps Δ!
• hence called gap-dependent bound
• though the UCB algorithm itself does not depend on knowledge of Δ! ’s

22

Analysis of ETC

Theorem: ETC algorithm suffers 𝑂 𝑘	 + log	𝑇 𝑇
"
regret for any MAB

instance.

Question: Can we do better than such a disentangled algorithm that
first learn (i.e., explore) and then decides/commits (i.e., exploit)?

Ans:
Ø Yes, but we need to blend exploration and exploitation together
Ø A representative and foundational algorithm is UCB that achieves regret

Regret& = 𝑂 Z
!6!∗

log 𝑇
Δ!

Ø This bound depends on 𝑇 logarithmically, and also depends on gaps Δ!
• hence called gap-dependent bound
• though the UCB algorithm itself does not depend on knowledge of Δ! ’s

Can be converted to gap-
independent bound 𝑂(𝑘𝑇 log 𝑇)

23

Ø First (Suboptimal) Attempt

Ø The UCB Algorithm

Ø Proving Regret Bound of UCB

Outline

24

In What Situations Is ETC Not Good?

ØWhen one arm is significantly better than another
• ETC was “too obsessed” with learning every arm accurately, and did

not realize that we could have discarded obviously bad arms
• (reflecting a key difference between learning decision and maximizing

accuracy)
• The Upper Confidence Bound (UBC) algorithm employs an elegant

way to optimize this tradeoff

Arm 1

Arm 2

Once we detected this case, no need to waste
further (highly sub-optimal) pulls to learn about arm 2

25

The Upper Confidence Bound (UCB) Algorithm

Comes from concentration inequality
• Given 𝑛 sampled rewards 𝑟", ⋯ , 𝑟, from any arm with mean 𝜇 and 𝜎-

sub-Gaussian reward distribution, we have

First things first, what is that (upper) confidence bound?

Pr 𝜇̅ − 𝜇 ≤ 𝜎 /01 "/7
,

≥ 1 −2𝛿 where. 𝜇̅ = ∑$%&
' 9$
,

	

• Denote 𝑙, = 𝜎 /01 "/7
,

. So with probability at least 1 − 2𝛿, we have

𝜇 ∈ [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,]

𝜇̅
𝜇

𝑙(

26

The Upper Confidence Bound (UCB) Algorithm

Comes from concentration inequality
• Given 𝑛 sampled rewards 𝑟", ⋯ , 𝑟, from any arm with mean 𝜇 and 𝜎-

sub-Gaussian reward distribution, we have

First things first, what is that (upper) confidence bound?

Pr 𝜇̅ − 𝜇 ≤ 𝜎 /01 "/7
,

≥ 1 −2𝛿 where. 𝜇̅ = ∑$%&
' 9$
,

	

• Denote 𝑙, = 𝜎 /01 "/7
,

. So with probability at least 1 − 2𝛿, we have

𝜇 ∈ [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,]

𝜇̅
𝜇

𝑙(

• 𝜇̅ + 𝑙, is called the upper confidence bound,
which is fully calculable from sampled rewards

• Relatedly, [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,] is called the
confidence interval of 𝜇

27

The Upper Confidence Bound (UCB) Algorithm

Comes from concentration inequality
• Given 𝑛 sampled rewards 𝑟", ⋯ , 𝑟, from any arm with mean 𝜇 and 𝜎-

sub-Gaussian reward distribution, we have

First things first, what is that (upper) confidence bound?

Pr 𝜇̅ − 𝜇 ≤ 𝜎 /01 "/7
,

≥ 1 −2𝛿 where. 𝜇̅ = ∑$%&
' 9$
,

	

• Denote 𝑙, = 𝜎 /01 "/7
,

. So with probability at least 1 − 2𝛿, we have

𝜇 ∈ [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,]

𝜇̅
𝜇

𝑙(

• 𝜇̅ + 𝑙, is called the upper confidence bound,
which is fully calculable from sampled rewards

• Relatedly, [𝜇̅ − 𝑙,, 𝜇̅ + 𝑙,] is called the
confidence interval of 𝜇

Guess what this is called?
Lower confidence bound

28

The Upper Confidence Bound (UCB) Algorithm

The Upper Confidence Bound (UCB) Algorithm

Parameter: 𝜹
1. Initialization: 𝑛! = 0 for each arm 𝑖 ∈ [𝑛]

2. For round 𝑡 = 1, 2⋯ , 𝑇
2.1. pull the arm 𝑖% = argmax

!∈[$]
ucb! 𝑛!: 𝛿 that has largest ucb (if

any, ties are broken arbitrarily)
3.2 update 𝑛!) ← 𝑛!) + 1, and update ucb!) 𝑛!) ; 𝛿

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0

29

The Upper Confidence Bound (UCB) Algorithm

The Upper Confidence Bound (UCB) Algorithm

Parameter: 𝜹
1. Initialization: 𝑛! = 0 for each arm 𝑖 ∈ [𝑛]

2. For round 𝑡 = 1, 2⋯ , 𝑇
2.1. pull the arm 𝑖% = argmax

!∈[$]
ucb! 𝑛!: 𝛿 that has largest ucb (if

any, ties are broken arbitrarily)
3.2 update 𝑛!) ← 𝑛!) + 1, and update ucb!) 𝑛!) ; 𝛿

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0

Theorem: The regret of UCB with parameter 𝛿 = 1/𝑇# is upper
bounded as follows:

 Regret = 𝑂 ∑!∈ $,!6!∗
/01 &
;$

30

The Upper Confidence Bound (UCB) Algorithm

Remarks about UCB.

Ø The first 𝑘 pulls will be arm 1, 2, … , 𝑘 has an arm with 0 pull has ∞ UCB
Ø In short, the algorithm uses UCB to guide choices and simply pick the

one with largest UCB
• Also called optimism in the face of uncertainty (OFU) principle

Ø Why UCB is a good idea for MAB
• A large UCB must be due to either being pulled/exploited too little

or large average reward

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0

31

The Upper Confidence Bound (UCB) Algorithm

Remarks about UCB.

Ø The first 𝑘 pulls will be arm 1, 2, … , 𝑘 has an arm with 0 pull has ∞ UCB
Ø In short, the algorithm uses UCB to guide choices and simply pick the

one with largest UCB
• Also called optimism in the face of uncertainty (OFU) principle

Ø Why UCB is a good idea for MAB
• A large UCB must be due to either being pulled/exploited too little

or large average reward
• Hence UCB nicely blends exploration and exploitation together

For any arm 𝑖, let 𝑛! = #rounds arm 𝑖 is pulled. Then define UCB as

 ucb! 𝑛!; 𝛿 	 = d
∞, 	 𝑛! = 0

𝜇̅! + 𝜎
/01 "/7
,$

, 𝑛! > 0

32

Ø First (Suboptimal) Attempt

Ø The UCB Algorithm

Ø Proving Regret Bound of UCB

Outline

33

Step 1: Understanding Where Regret Comes From

ØRecall 𝑢∗ = max
!∈[-]

𝑢! is the mean of the best arm 𝑖∗

ØWould have 0 regret if we always pulled 𝑖∗…so whenever we
pulled some 𝑖 ≠ 𝑖∗ once, we suffer regret Δ! = 𝜇∗ − 𝜇!

Lemma 1 (Regret Decomposition): Let 𝑁! denote the total number of
times arm 𝑖 is pulled by any algorithm for MAB. Then the algorithm’s
regret satisfies
 Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!

Proof: obvious from above explanations.

Challenges in remaining analysis – each 𝑁! is a random
variable, how do we upper bound its expected value?

34

Step 2: Identifying Good and Bad Events

ØRandomness gives rise to a lot of situations/events – clearly,
bad event may happen
• E.g., with tiny probability, we may end up always pulling a bad arm

Core idea: we want to separately analyze good and bad events
and hopefully show that bad events have very low probability

35

Step 2: Identifying Good and Bad Events

Lemma 2: for any 𝑡, Pr 𝐸% ≥ 1 − 2𝛿.

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

I know this –
concentration

inequality!

Almost, but
trickier, why?

Caveats
Ø 𝐸% is about 𝑟", ⋯ , 𝑟<*) where 𝑁=) is

a random variable
Ø Concentration inequality is only

for a fixed number of samples 𝑛

36

Step 2: Identifying Good and Bad Events

Proof.
Ø Conditioned on any realized 𝑖%, 𝑛!) , 𝑅!)

? − 𝜇!)
?

?+"

,$) is a martingale since
given any history before 𝜏, 𝔼 𝑅!)

? − 𝜇!)
? = 0 always

Ø Azuma-Hoeffding inequality implies

Pr 𝑟̅!) − 𝜇!) ≤ 𝜎 28log 1/𝛿
𝑛!)

𝑖%, 𝑛=) ≥ 1 − 2𝛿

Ø Taking expectation w.r.t to i@, 𝑖=) 	on both sides, we get Pr 𝐸% ≥ 1 − 2𝛿

Lemma 2: for any 𝑡, Pr 𝐸% ≥ 1 − 2𝛿.

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

37

Step 2: Identifying Good and Bad Events

Remark.
Ø Why we cannot apply standard Hoeffding inequality to 𝑅!)

? − 𝜇!)
?

?+"

,$) 	C,
after conditioning on 𝑖%, 𝑛=)?

Ø Because conditioning on 𝑖%, 𝑛=) , 𝑅!)
?
?+"
,$) are not I.I.D. samples!

• Be careful that some materials overlooked this subtle issue

Lemma 2: for any 𝑡, Pr 𝐸% ≥ 1 − 2𝛿.

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

Larger 𝑛!) à arm 𝑖% is pulled more à realized past 𝑅!)
? ’s are larger

38

Step 2: Identifying Good and Bad Events

Lemma 3: Pr ∩%+"& 𝐸% ≥ 1 − 2𝑇𝛿

Proof. Let 𝐸% denotes complement of 𝐸%, we have

Pr ∩%+", 𝐸% = 1	 − Pr ∪%+"& 𝐸%
≥ 1	 − ∑%+"& Pr 𝐸%

Notably, this holds even when 𝐸%’s
are correlated (and indeed they are)

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

39

Step 2: Identifying Good and Bad Events

Lemma 3: Pr ∩%+"& 𝐸% ≥ 1 − 2𝑇𝛿

Proof. Let 𝐸% denotes complement of 𝐸%, we have

Pr ∩%+", 𝐸% = 1	 − Pr ∪%+"& 𝐸%
≥ 1	 − ∑%+"& Pr 𝐸%

Definition: Define (random) good event 𝐸% as “after pulling arm 𝐼% at
round 𝑡, arm 𝐼%’s true mean is within its confidence interval”. That is,

 𝐸% = 𝑟", ⋯ , 𝑟<*) : 𝜇̅=) − 𝜇=) ≤ 𝜎 #> /01 "/7
<*)

≥ 1	 − 2𝑇𝛿

Hence, setting 𝛿 = 1/𝑇#, all
good events simultaneously
happen with probability ≥ 2/𝑇

40

Step 3: Bounding Regret under Good Events

ØNow, we focus on situations where all 𝐸$ ’s happen, i.e., ∩$%&' 𝐸$

ØSince 𝐸$ is about the pulled arm 𝐼$, and this is the only arm at
round 𝑡 whose confidence interval could possibly changes

à under ∩$%&' 𝐸$, every arm 𝑖’s mean is always within
its confidence interval throughout the entire algorithm

41

Step 3: Bounding Regret under Good Events

Arm 𝑖∗ Arm 𝑖

𝜇∗

𝜇!

Lemma 4: Under event ∩%+"& 𝐸%, Pr 𝑁! ≤ 4𝜎# /01 "/7
;$ "

+ 1 = 1 for any 𝑖 ≠ 𝑖∗

Prove by contradiction:

Ø Suppose 𝑁! > 4𝜎# /01("/7)
;$ "

+ 1, and let 𝑁 = 4𝜎# /01("/7)
;$ "

Ø We must have pulled arm 𝑖 when its 𝑁! = 𝑁
Ø Hence we have

ucb! N 𝛿 = 𝜇̅! + 𝜎
log 1/𝛿
𝑁

≤ 𝜇̅! + Δ!/2 Plugging in 𝑁 ≥ 4𝜎# /01("/7)
;$ "

or equivalently, Δ! ≥ 2𝜎 /01 "/7
<

= 𝜇̅! − Δ!/2 + Δ!

≤ 𝜇̅! − 𝜎
log 1/𝛿
𝑁

+ Δ!

42

< 𝜇∗ < 𝑢𝑐𝑏!∗(𝑁!∗|𝛿)

Step 3: Bounding Regret under Good Events

Lemma 4: Under event ∩%+"& 𝐸%, Pr 𝑁! ≤ 4𝜎# /01 "/7
;$ "

+ 1 = 1 for any 𝑖 ≠ 𝑖∗

Prove by contradiction:

Ø Suppose 𝑁! > 4𝜎# /01("/7)
;$ "

+ 1, and let 𝑁 = 4𝜎# /01("/7)
;$ "

Ø We must have pulled arm 𝑖 when its 𝑁! = 𝑁
Ø Hence we have

ucb! N 𝛿 = 𝜇̅! + 𝜎
log 1/𝛿
𝑁

= lcb! 𝑁 𝛿 + 𝜇∗ − 𝜇!
By definition of lower confidence
bound and Δ!

≤ 𝜇̅! − 𝜎
log 1/𝛿
𝑁

+ Δ!

When in event ∩%+"& 𝐸%

lcb

ucb

So it is impossible that 𝑖’s ucb can
be larger than 𝑖∗’s, if 𝑁! = 𝑁.

Arm 𝑖∗ Arm 𝑖

𝜇∗

𝜇!

43

(Final) Step 4: Putting Everything Together

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! By regret decomposition

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$)

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$)

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1

By lemma 3, the probably
some bad event happens
is at most 2𝛿𝑇

By lemma 4, 𝑁! is surely at
most 4𝜎# /01 "/7

;$ "
+ 1

+ 𝐶𝑇×2𝛿𝑇

44

(Final) Step 4: Putting Everything Together

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! By regret decomposition

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$)

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$)

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1

≤ ∑!∈ - ,!/!∗ 8𝜎0
123 '
6%

+ Δ! + 2𝐶 Plugging in 𝛿 = 1/𝑇#

= 𝑂 ∑!∈ - ,!/!∗
123 '
6%

 Computer science way to write it by
using Big-O to hide all constants

This is called a gap-dependent regret bound (though running UCB
does not need to know Δ! ’s).

See issues? Very bad if some Δ! → 0 !

+ 𝐶𝑇×2𝛿𝑇

45

The Gap-Independent Regret Bound for UCB

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$)

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$)

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1 + 𝐶𝑇×2𝛿𝑇

min 4𝜎# /01 "/7
;$ "

+ 1, 𝑇

46

The Gap-Independent Regret Bound for UCB

Regret = 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁!

= 𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∩$%&' 𝐸$ ×Pr(∩$%&' 𝐸$)

+	𝔼 ∑!∈ - ,!/!∗ Δ!𝑁! | ∪$%&' P𝐸$ ×Pr(∪$%&' P𝐸$)

≤ ∑!∈ - ,!/!∗ Δ!× 4𝜎0 123 &/5
6% &

+ 1 + 𝐶𝑇×2𝛿𝑇

= 𝑂 ∑!∈ - ,!/!∗ Δ!×min
123 &/5
6% &

, 𝑇

= 𝑂 ∑!∈ - ,!/!∗min
123 '
6%

, 𝑇Δ!

= 𝑂 𝑘 𝑇 log 𝑇 Caveat: there are tricks to refine last few
steps to sharpen this bound to 𝑂 𝑘	𝑇 log 𝑇 ;
 Might be in homework J

47

Further Remarks

Ø There are other variants of UCB, some of which have slightly better
bounds than this standard one we analyzed

• However, all important ideas/techniques have been covered

Ø More generally, UCB is a kind of “index policy”
• That is, designing an “index” to measure the value of each arm, and act

purely based on this index
• Such index policies are very useful, and find applications in many other

cool problems such as Pandora’s box, restless bandits

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

