DATA 37200: Learning, Decisions, and Limits (Winter 2025)

Lower Bounds for Stochastic MAB

Instructor: Haifeng Xu

Technical Preparations

Detour: Best-Arm Identification (BAI) Lower Bounds

➤ MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

Lower Bounds: What and Why?

We look to derive results of form like

Regret $\geq C\sqrt{KT}$ for some constant C

or equivalently, Regret = $\Omega(\sqrt{KT})$

This helps to understand what we *cannot* achieve – i.e., our limits

Lower Bounds: What and Why?

We look to derive results of form like

Regret $\geq C\sqrt{KT}$ for some constant C

or equivalently, Regret = $\Omega(\sqrt{KT})$

This helps to understand what we *cannot* achieve – i.e., our limits

- If you have learned computational hardness (e.g., NP-hardness), that shares a similar spirit but very different flavor
- Computational lower bounds are mostly conditional
 - E.g., 3SAT takes at least exponential time to solve, if $P \neq NP$ •
 - $P \neq NP$ is an assumption •
- The bound we will show for MAB is unconditional
 - i.e., they are facts that do not require any assumption ٠
 - Proofs here will mostly uses information theory •

KL-Divergence

A useful quantity that measures "distance" between two distributions

Definition (KL-Divergence). For any two distributions p, q supported on discrete set X, their Kullback–Leibler (KL) divergence is defined as $KL(x, q) = \sum_{x} p(x) \ln \left[\frac{p(x)}{2}\right] = \mathbb{E} - \ln \left[\frac{p(x)}{2}\right]$

$$KL(p,q) = \sum_{x \in X} p(x) \ln \left[\frac{p(x)}{q(x)} \right] = \mathbb{E}_{x \sim p} \ln \left[\frac{p(x)}{q(x)} \right]$$

Remarks

- Similarly defined for continuous domain, though not needed for now
- > It is not symmetric: $KL(p, q) \neq KL(q, p)$
- Closely related to entropy; also named "relative entropy"
- Widely used in practice for measuring distribution distance (e.g., it is the default regularizer for fine-tuning LLMs)

KL-Divergence: An Example

Definition. (Biased Random Coins). For any $\epsilon \in [-\frac{1}{2}, \frac{1}{2}]$, let RC_{ϵ} be the binary random coin with $\epsilon/2$ bias -- i.e., it takes value 1/head with prob $\frac{1+\epsilon}{2}$, and 0/tail otherwise.

 $> RC_{\epsilon}$ is a Bernoulli random variable with $p = (1 + \epsilon)/2$

Calculating KL-divergence

$$KL(RC_{\epsilon}, RC_{0}) = \frac{1+\epsilon}{2} \ln\left[\frac{(1+\epsilon)/2}{1/2}\right] + \frac{1-\epsilon}{2} \ln\left[\frac{(1-\epsilon)/2}{1/2}\right]$$

Claim: $KL(RC_{\epsilon}, RC_{0}) \leq 2\epsilon^{2}$ and $KL(RC_{0}, RC_{\epsilon}) \leq \epsilon^{2}$ for any $\epsilon \in (0, \frac{1}{2})$

Remark: this ϵ^2 term turns out to be the reason of the $\Omega(T^{\frac{1}{2}})$ lower bound Claim's proof deferred to HW.

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties

- **a.** Gibb's Inequality: $KL(p,q) \ge 0$, with equality if and only if p = q
- **b.** Chain rule for product distributions: For $i = 1, \dots, n$, let p_i, q_i be two distributions supported on X_i . $p = p_1 \times p_2 \dots \times p_n, q = q_1 \times q_2 \dots \times q_n$ be their product distributions. Then $KL(p,q) = \sum_{i=1}^n KL(p_i,q_i)$.
- **c. Pinsker's inequality**: For any event $A \subseteq X$, we have $2[p(A) - q(A)]^2 \le KL(p,q)$

Remarks.

- > The probability difference of any event is upper bounded by $O(\sqrt{KL(p,q)})$
- >Illustrates why it captures "divergence" between two distributions
- > Pinsker's inequality implies $KL(RC_0, RC_\epsilon) \ge \epsilon^2/2$ (compare to previous claim $KL(RC_0, RC_\epsilon) \le \epsilon^2$)

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties

- **a.** Gibb's Inequality: $KL(p,q) \ge 0$, with equality if and only if p = q
- **b.** Chain rule for product distributions: For $i = 1, \dots, n$, let p_i, q_i be two distributions supported on X_i . $p = p_1 \times p_2 \dots \times p_n, q = q_1 \times q_2 \dots \times q_n$ be their product distributions. Then $KL(p,q) = \sum_{i=1}^n KL(p_i,q_i)$.
- **c. Pinsker's inequality**: For any event $A \subseteq X$, we have $2[p(A) - q(A)]^2 \le KL(p,q)$

Proofs deferred to HW1.

Exercise with KL & a Warm-up Lower-Bound Problem

How many coin flips are needed to confidently tell it is fair or not?

>You know a coin is either RC_0 or RC_{ϵ}

- RC_0 is called a fair coin, and RC_{ϵ} has $\epsilon/2$ bias
- >You can flip the coin T times
- Based on your observations, you have a (deterministic) decision rule to decide it is fair or biased:

Rule: $\{0,1\}^T \rightarrow \{\text{fair, biased}\}$

>You know a coin is either RC_0 or RC_{ϵ}

• RC_0 is called a fair coin, and RC_{ϵ} has $\epsilon/2$ bias

>You can flip the coin T times

Based on your observations, you have a (deterministic) decision rule to decide it is fair or biased:

Rule: $\{0,1\}^T \rightarrow \{\text{fair, biased}\}$

Question: how large your *T* needs to at least be for you to be correct with high prob in the following sense?

 $Pr[Rule(observations) = fair | RC_0] \ge 3/4$ (1) $Pr[Rule(observations) = biased | RC_{\epsilon}] \ge 3/4$ (2)

11

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2c^2}$.

Proof

> The decision rule is deterministic, so there is a subset $A_0 \subseteq \{0,1\}^T$ of events such that

Rule(x) = fairfor any $x \in A_0$ Rule(x) = biasedfor any $x \notin A_0$

➤ Following accuracy requirement implies A_0 happens with probability ≥ 3/4 under RC_0 , but happens with prob ≤ 1/4 under RC_{ϵ}

Question: how large your *T* needs to at least be for you to be correct with high prob in the following sense?

 $Pr[Rule(observations) = fair | RC_0] \ge 3/4$ (1) $Pr[Rule(observations) = biased | RC_{\epsilon}] \ge 3/4$ (2)

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof

> The decision rule is deterministic, so there is a subset $A_0 \subseteq \{0,1\}^T$ of events such that

Rule(x) = fairfor any $x \in A_0$ Rule(x) = biasedfor any $x \notin A_0$

➤ Following accuracy requirement implies A_0 happens with probability ≥ 3/4 under RC_0 , but happens with prob ≤ 1/4 under RC_{ϵ}

That is, $Pr(A_0|RC_0) - Pr(A_0|RC_{\epsilon}) \ge 3/4 - 1/4 = 1/2$

Next we employ properties of KL to show T has to be large to achieve the above inequality

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof (con'd)

That is, $Pr(A_0|RC_0) - Pr(A_0|RC_{\epsilon}) \ge 3/4 - 1/4 = 1/2$

>Let $p_i = RC_0$, $q_i = RC_\epsilon$; consider product distributions $p = \prod_{i=1}^T p_i$, $q = \prod_{i=1}^T q_i$

 $\succ p, q$ are measures over $\{0,1\}^T \supseteq A_0$, so Pinsker's inequality told us

$$KL(p,q) \ge 2|\Pr(A_0|RC_0) - \Pr(A_0|RC_{\epsilon})|^2 \ge 1/2$$

≻Employ chain rule to upper bound KL:

 $KL(q,q) = \sum_{i=1}^{T} KL(p_i,q_i) \le T\epsilon^2$

➤Combing these two inequalities we have

$$T \ge \frac{KL(p,q)}{\epsilon^2} \ge \frac{1}{2\epsilon^2}$$

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof (con'd)

That is, $Pr(A_0|RC_0) - Pr(A_0|RC_{\epsilon}) \ge 3/4 - 1/4 = 1/2$

>Let $p_i = RC_0$, $q_i = RC_\epsilon$; consider product distributions $p = \prod_{i=1}^T p_i$, $q = \prod_{i=1}^T q_i$

 $\succ p, q$ are measures over {0,1}^T ⊇ A_0 , so Pinsker's inequality told us

$$KL(p,q) \ge 2|\Pr(A_0|RC_0) - \Pr(A_0|RC_{\epsilon})|^2 \ge 1/2$$

Employ chain rule to upper bound KL:

Remarkably, the proof applies to any decision rule; fundamentally, it is because Pinsker's inequality holds for any A_0

$$T \ge \frac{KL(p,q)}{\epsilon^2} \ge \frac{1}{2\epsilon^2}$$

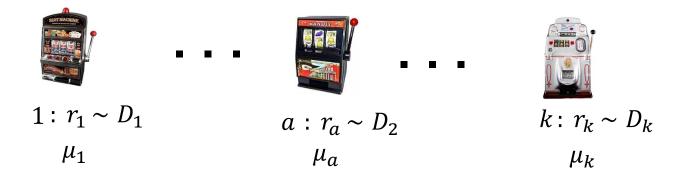
Technical Preparations

Detour: Best-Arm Identification (BAI) Lower Bounds

➤ MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

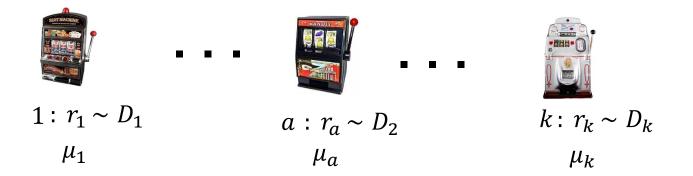
A Variant of MAB: Best-Arm Identification (BAI)



> Same setup as MAB, but task is to identify best arm $i^* (= \arg \max_{i \in [k]} \mu_i)$

- > Same strategy process of pulling arms $i^1, i^2, ..., i^t, ..., i^T$
- > Given *T* rounds of opportunities, performance is measured by *probability* of success $Pr(I^T = i^*)$

A Variant of MAB: Best-Arm Identification (BAI)

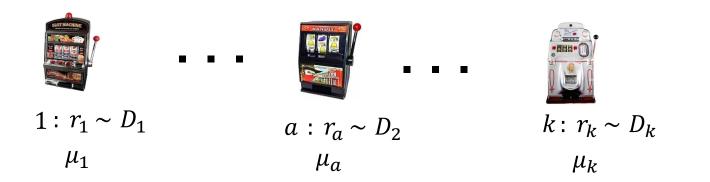


> Same setup as MAB, but task is to identify best arm $i^* (= \arg \max_{i \in [k]} \mu_i)$

- > Same strategy process of pulling arms $i^1, i^2, ..., i^t, ..., i^T$
- > Given *T* rounds of opportunities, performance is measured by *probability* of success $Pr(I^T = i^*)$
 - \succ Clearly, if T is very large, we can easily succeed with high prob.
 - Goal Next: understand how large T needs to be in order to guarantee reasonable success on any problem instance

By proving a statement of form "if $T \leq ??$, then for any algorithm will have at least constant probability of failing to find optimal arm on some instance"

Imaging the Difficult Instances...

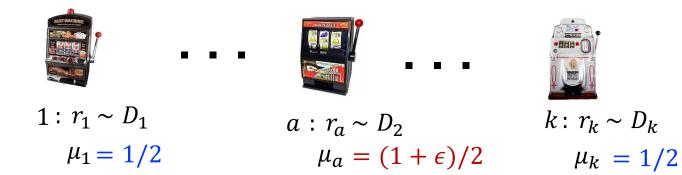


What instance would be difficult for BAI?

> All arms have equal mean, except one of them that is slightly higher

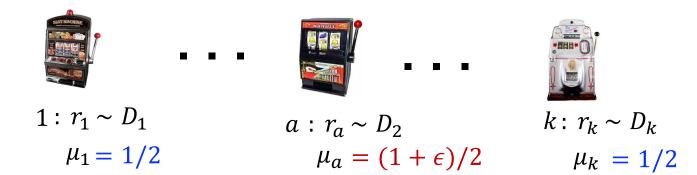
- Difficult since every sub-optimal arm is equally confusing
- Hopefully, each arm has large variance so rewards are random enough to "hide" the true mean
 - Interestingly, Bernoulli distributions (i.e., biased coins) turn out to already be sufficiently hard

Construction of Lower Bound Instances



- \succ Each D_i is Bernoulli
- > All of them are RC_0 , except one arm a is RC_{ϵ}

Construction of Lower Bound Instances



> Each D_i is Bernoulli

> All of them are RC_0 , except one arm a is RC_{ϵ}

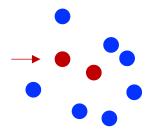
Remark.

This is not a single instance, but rather a set of k instances – each $a \in [k]$ correspond to one *problem instance* P_a

Formally, $P_a = \{k \text{ bandits with } D_a = RC_{\epsilon}, \text{ all other } D_i = RC_0\}$

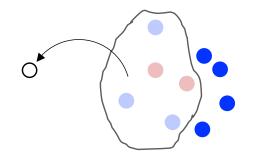
A Note on Lower Bound Proof Approaches

- Generally, two approaches to show an algorithm can perform bad on some instance
 - 1. Show that an algorithm does bad on some instance



A Note on Lower Bound Proof Approaches

- Generally, two approaches to show an algorithm can perform bad on some instance
 - 1. Show that an algorithm does bad on some instance
 - 2. Craft a set of instance, then randomly sample one for the algorithm to solve; show that the algo's expected performance is bad



A Note on Lower Bound Proof Approaches

- Generally, two approaches to show an algorithm can perform bad on some instance
 - 1. Show that an algorithm does bad on some instance
 - 2. Craft a set of instance, then randomly sample one for the algorithm to solve; show that the algo's expected performance is bad
- > (2)⇒ (1) because if an algorithm perform bad in expectation, it must have performed bad in at least one instance on the support
- > A stronger version of (1) ⇒ (2):

if an algo does bad on a constant fraction of instances, then it has constant probability to perform bad on a randomly sampled instance

- (1) suffices for a lower bound proof, but we use (2) often due to proof convenience
- > For our problem, we will use the set of instances $\{P_a\}_{a \in [k]}$

Lower Bounds for BAI

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]}$, where *c* is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k/3] P_a instances such that

 $\Pr(I^T \neq a | P_a) \ge 1/2$

 $P_a = \{k \text{ bandits with } D_a = RC_{\epsilon}, \text{ all other } D_i = RC_0\}$

Lower Bounds for BAI

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]}$, where *c* is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k/3] P_a instances such that

 $\Pr(I^T \neq a | P_a) \ge 1/2$

Corollary: Consider any BAI algorithm (possibly randomized) running on a uniformly randomly sampled instance from set $\{P_a\}_{a \in [k]}$ with $T \leq \frac{ck}{\epsilon^2}$.

Then $Pr(I^T \neq i^*) \ge \frac{1}{6}$ where probability is over random choice of instance P_a , randomness of rewards and the algorithm.

- ➢ For deterministic algo, we have Pr(I^T ≠ a|P_a) ≥ 1/2 for at least 1/3 of instances in {P_a}_{a∈[k]} ⇒ Pr(I^T ≠ i^{*}) ≥ $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ on a sampled instance
- Any randomized algorithm is a distribution over deterministic algorithm $\Rightarrow \Pr(I^T \neq i^*) \ge \frac{1}{6}$ by taking expectation over algo' randomness

Next: Proof of Theorem 0 in 3 Steps

27

Step I: Converting the question to an instance testing problem by introducing a benchmark scenario

Introduce instance P_0 , where all k arms are independent RC_0 (i.e., non-biased coins)

>Intuitions for remaining proofs

- We say an arm $j \in [k]$ is "neglected" by the algorithm if (1) it was not played too often; (2) it has low probability to be the final output I^T
- Will show under any deterministic algorithm to P_0 , a constant fraction of arms are neglected

because not all arms can be played a lot, simply by counting

Step I: Converting the question to an instance testing problem by introducing a benchmark scenario

Introduce instance P_0 , where all k arms are independent RC_0 (i.e., non-biased coins)

Intuitions for remaining proofs

- We say an arm $j \in [k]$ is "neglected" by the algorithm if (1) it was not played too often; (2) it has low probability to be the final output I^T
- Will show under any deterministic algorithm to P₀, a constant fraction of arms are neglected
 because not all arms can be played a lot, simply by counting
- Now consider any neglected arm under the same algorithm in P_j KL(P_j, P₀) is likely small since they only slightly differ on arm j, Pinsker's Inequality told us Pr(I^T ≠ j|P_j) – Pr(I^T ≠ j|P₀) must be small

Tricky part is to figure out how small this could tightly be!

Step 2: Characterizing "neglected arms" under any deterministic algorithm on benchmark instance P_0

Lemma 1: For any deterministic algorithm on P_0 , there is a subset $J \subset [k]$ of arms such that

- 1) $|J| \ge k/3$
- 2) For any $j \in J$, $\mathbb{E}(N_j^T | P_0) \leq \frac{3T}{k}$

3) For any $j \in J$, $\Pr(I^T = j | P_0) \le \frac{3}{k}$

Recall: I^T is the (random) arm pulled at last round T N_j^T is the number of times arm j is pulled until round T

That is, J contains all arms that are "neglected" in the sense of property 2) and 3)

> Property 1) says that J has size at least k/3

Step 2: Characterizing "neglected arms" under any deterministic algorithm on benchmark instance P_0

Lemma 1: For any deterministic algorithm on P_0 , there is a subset $J \subset [k]$ of arms such that

- 1) $|J| \ge k/3$
- 2) For any $j \in J$, $\mathbb{E}(N_j^T | P_0) \le \frac{3T}{k}$
- 3) For any $j \in J$, $\Pr(I^T = j | P_0) \le \frac{3}{k}$

Intuition of the proof

> Follows from counting argument:

- At least 2k/3 arms satisfy property 2) since $\sum_{j=1}^{T} N_j^T = T$ is always true
- At least 2k/3 arms satisfy property 3) since $\sum_{j=1}^{T} \Pr(I_j^T = j) = 1$

Formal proof left to HW1!

Step 2: Characterizing "neglected arms" under any deterministic algorithm on benchmark instance P_0

Lemma 1: For any deterministic algorithm on P_0 , there is a subset $J \subset [k]$ of arms such that

- 1) $|J| \ge k/3$
- 2) For any $j \in J$, $\Pr\left(N_j^T \le \frac{24T}{k} \mid P_0\right) \ge \frac{7}{8}$

3) For any
$$j \in J$$
, $\Pr(I^T = j | P_0) \le \frac{3}{k}$

Corollary: Property 2) above implies $\Pr\left(N_j^T \le \frac{24T}{k} | P_0\right) \ge \frac{7}{8}$

Proof.

$$\Pr\left(N_j^T > \frac{24T}{k} \mid P_0\right) \le \frac{\mathbb{E}\left(N_j^T \mid P_0\right)}{24T/k} \qquad \begin{array}{l} \text{By Markov's inequality} \\ \Pr(N > x) \le \frac{\mathbb{E}(N)}{x} \\ \le 1/8 \qquad \begin{array}{l} \text{By plugging in property 2} \end{array}\right)$$

This implies the corollary

The intuitive idea is straightforward

- Want to show KL divergence $KL(P_0, P_j)$ is upper bounded
- Pinsker's Inequality then implies if *j* is neglected under P_0 , it will be under P_j as well

Technical argument needs careful treatment

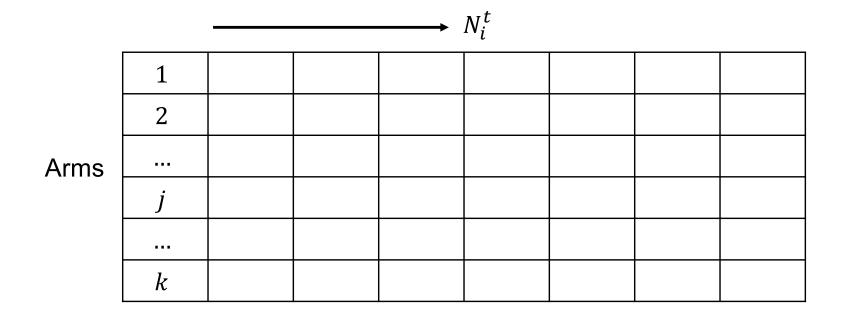
– Simple argument yields $T \leq \frac{c}{\epsilon^2}$

- To get the stronger $T \leq \frac{ck}{\epsilon^2}$ bound, we need to carefully define the (random) events that determine a BAI algorithm's behavior

A deterministic BAI algorithm maps any observed reward sequence thus far to the next to-be-pulled arm

Alg:
$$\{0,1\}^t \rightarrow [k]$$

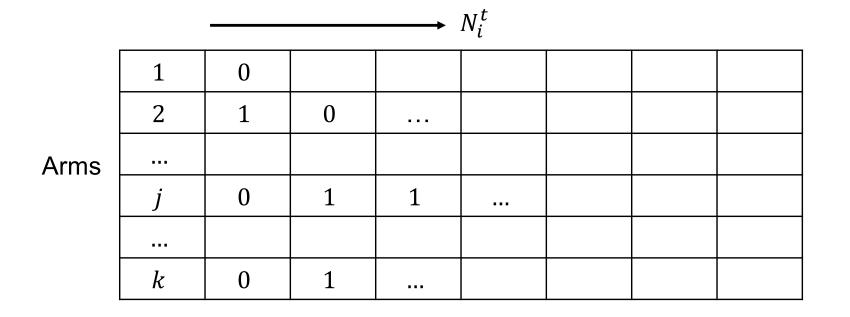
Such an Alg can be viewed as an adaptive way to open exactly T cells of a random reward table



A deterministic BAI algorithm maps any observed reward sequence thus far to the next to-be-pulled arm

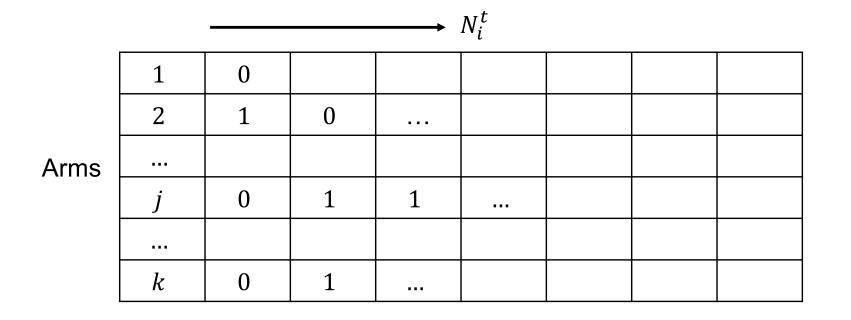
Alg:
$$\{0,1\}^t \rightarrow [k]$$

Such an Alg can be viewed as an adaptive way to open exactly T cells of a random reward table

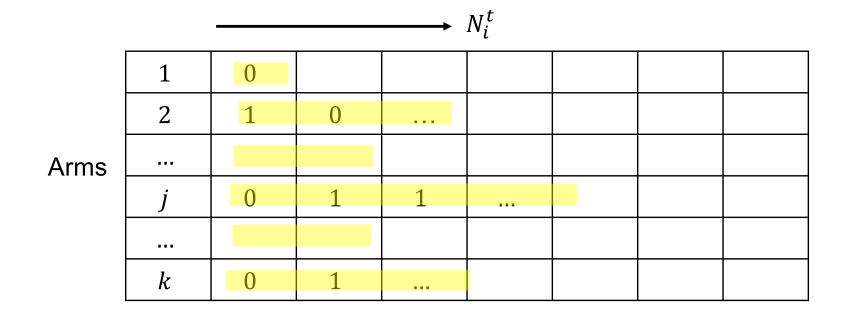


35

- > We only care about event $Pr(I^T = j)$
- Randomness purely comes from this random reward table
 - Since Alg is deterministic it maps a sequence of *T* rewards to a deterministic choice of *I*^T

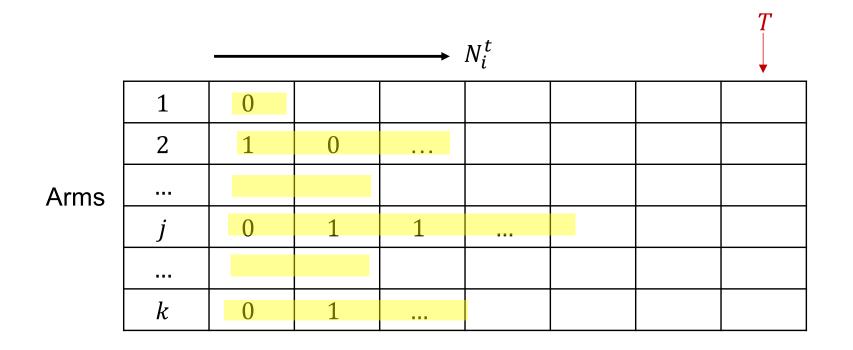


- > We only care about event $Pr(I^T = j)$
- Randomness purely comes from this random reward table
 - Since Alg is deterministic it maps a sequence of *T* rewards to a deterministic choice of *I*^T
 - These *T* rewards can be from different rows/arms



37

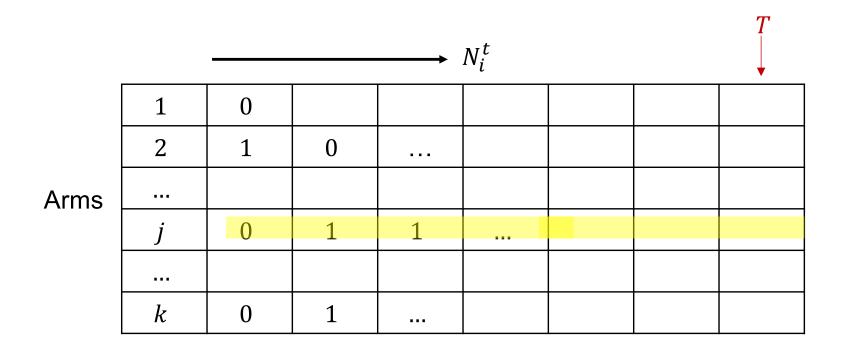
- Bad news: generally, every reward cell below can possibly affect the algorithm
 - We particularly do not like that all T cells in j's row can affect Alg



Bad news: generally, every reward cell below can possibly affect the algorithm

• We particularly do not like that all *T* cells in *j*'s row can affect Alg \Rightarrow too much randomness that makes $KL(P_0, P_j)$ too large

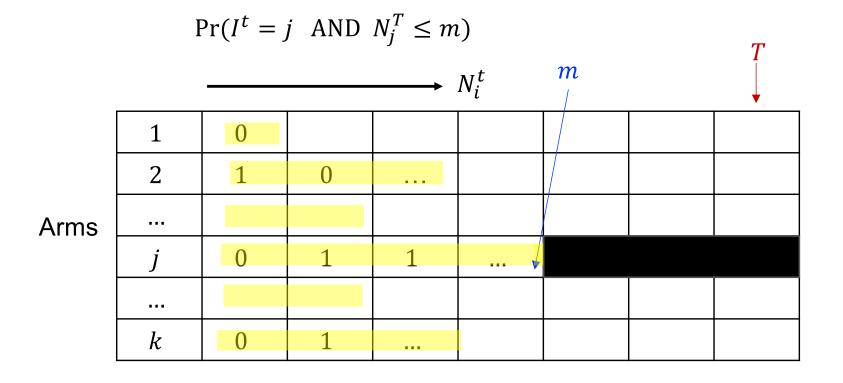
 \Rightarrow a non-tight bound c/ϵ^2



➤ Key idea: only consider first $m = \min\{\frac{24T}{k}, T\}$ cells in *j*'th row, though allow other rows' all random rewards (since they are equal under P_0, P_j)

Formally, consider

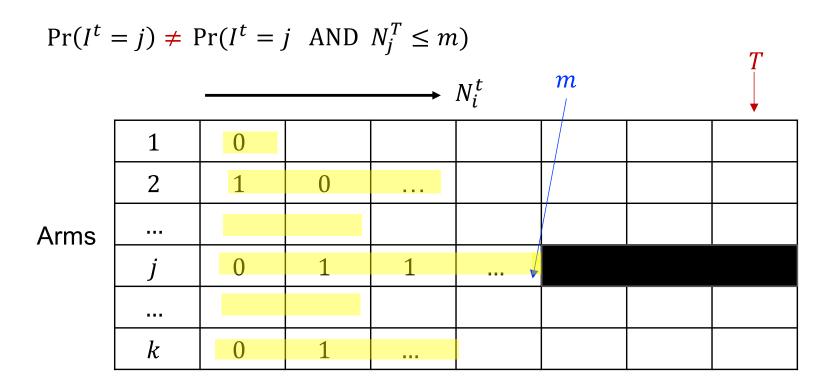
From Lemma 1, these are precisely the condition of "neglected arms"



➤ Key idea: only consider first $m = \min\{\frac{24T}{k}, T\}$ cells in *j*'th row, though allow other rows' all random rewards (since they are equal under P_0, P_i)

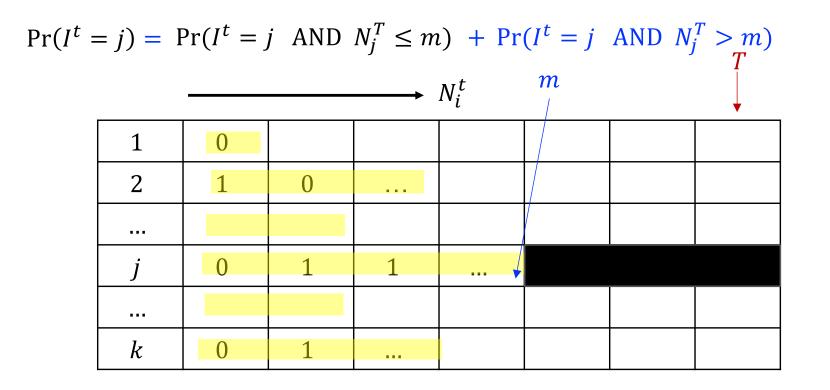
Formally, consider

From Lemma 1, these are precisely the condition of "neglected arms"



➤ Key idea: only consider first $m = \min\{\frac{24T}{k}, T\}$ cells in *j*'th row, though allow other rows' all random rewards (since they are equal under P_0, P_i)

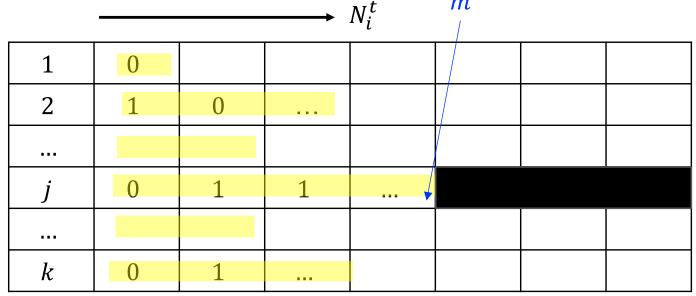
Formally, consider



Both events depend only on first m rewards of row j

$$\leq \Pr(I^{t} = j \text{ AND } N_{j}^{T} \leq m) + \Pr(N_{j}^{T} > m)$$

$$\Pr(I^{t} = j) = \Pr(I^{t} = j \text{ AND } N_{j}^{T} \leq m) + \Pr(I^{t} = j \text{ AND } N_{j}^{T} > m)$$

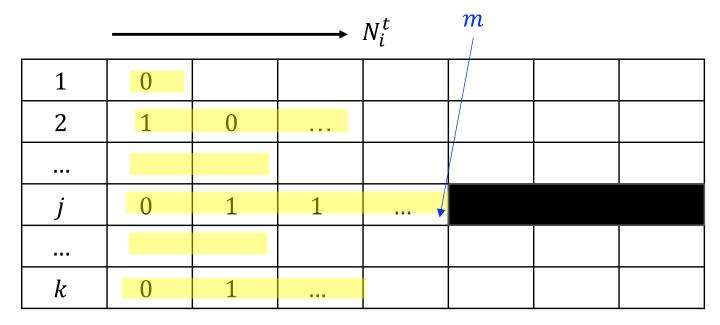


43

- \succ Let $p_j^t = RC_0$ for t = 1, 2, ..., m and $p_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- ≻ Let $q_j^t = RC_{\epsilon}$ for t = 1, 2, ..., m and $q_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- ➢ Both event A₁, A₂ are in support of $p = Π_{i≠j,t∈[T]}p_i^t · Π_{t∈[m]}p_j^t$ and a similarly defined q
 Event A₁
 Event A₂

$$\leq \Pr(I^t = j \text{ AND } N_j^T \leq m) + \Pr(N_j^T > m)$$

 $\Pr(I^t = j) = \Pr(I^t = j \text{ AND } N_j^T \le m) + \Pr(I^t = j \text{ AND } N_j^T > m)$



- ≻ Let $p_j^t = RC_0$ for t = 1, 2, ..., m and $p_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- \succ Let $q_j^t = RC_{\epsilon}$ for t = 1, 2, ..., m and $q_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- ➢ Both event A₁, A₂ are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q
 Event A₁
 Event A₂

$$\Pr(I^t = j) \leq \Pr(I^t = j \text{ AND } N_j^T \leq m) + \Pr(N_j^T > m)$$

By chain rule

$$KL(p,q) = \sum_{i \neq j,t \in [T]} KL(p_i^t, q_i^t) + \sum_{t \in [m]} KL(p_j^t, q_j^t)$$

$$= \sum_{i \neq j,t \in [T]} KL(RC_0, RC_0) + \sum_{t \in [m]} KL(RC_0, RC_\epsilon)$$

$$= m KL(RC_0, RC_\epsilon)$$

$$\leq \frac{24T}{k} \epsilon^2 \qquad \text{Since } m = \min\{\frac{24T}{k}, T\}$$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

- ≻ Let $p_j^t = RC_0$ for t = 1, 2, ..., m and $p_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- \succ Let $q_j^t = RC_{\epsilon}$ for t = 1, 2, ..., m and $q_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- ► Both event A_1, A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

 $\operatorname{Event} A_1 \qquad \qquad \operatorname{Event} A_2$ $\operatorname{Pr}(I^t = j) \leq \operatorname{Pr}(I^t = j \text{ AND } N_j^T \leq m) + \operatorname{Pr}(N_j^T > m)$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

$$\Rightarrow |\Pr(A|P_0) - \Pr(A|P_j)| \le \sqrt{KL(p,q)/2} \le \frac{1}{8}$$

- ≻ Let $p_j^t = RC_0$ for t = 1, 2, ..., m and $p_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- \succ Let $q_j^t = RC_{\epsilon}$ for t = 1, 2, ..., m and $q_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- ► Both event A_1, A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

 $\operatorname{Event} A_1 \qquad \qquad \operatorname{Event} A_2$ $\operatorname{Pr}(I^t = j) \leq \operatorname{Pr}(I^t = j \text{ AND } N_j^T \leq m) + \operatorname{Pr}(N_j^T > m)$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

$$\Rightarrow |\Pr(A|P_0) - \Pr(A|P_j)| \le \sqrt{KL(p,q)/2} \le \frac{1}{8}$$

$$Pr(A_1|P_j) \le Pr(A_1|P_0) + \frac{1}{8} \qquad Pr(A_2|P_j) \le Pr(A_2|P_0) + \frac{1}{8}$$
$$\le \frac{3}{k} + \frac{1}{8} \quad (by \text{ lemma 1}) \qquad \le \frac{1}{8} + \frac{1}{8} \quad (by \text{ lemma 1})$$
$$\le \frac{1}{4} \qquad \le \frac{1}{4}$$
By considering

instances with large k

- ≻ Let $p_j^t = RC_0$ for t = 1, 2, ..., m and $p_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- \succ Let $q_j^t = RC_{\epsilon}$ for t = 1, 2, ..., m and $q_i^t = RC_0$ for $i \neq j$ and t = 1, 2, ..., T
- ► Both event A_1, A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

 $\operatorname{Pr}(I^{t} = j) \leq \operatorname{Pr}(I^{t} = j \text{ AND } N_{j}^{T} \leq m) + \operatorname{Pr}(N_{j}^{T} > m) \leq \frac{1}{2} \text{ on instance } P_{j}$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

$$\Rightarrow |\Pr(A|P_0) - \Pr(A|P_j)| \le \sqrt{KL(p,q)/2} \le \frac{1}{8}$$

$$Pr(A_1|P_j) \le Pr(A_1|P_0) + \frac{1}{8} \qquad Pr(A_2|P_j) \le Pr(A_2|P_0) + \frac{1}{8}$$
$$\le \frac{3}{k} + \frac{1}{8} \quad (by \text{ lemma 1}) \qquad \le \frac{1}{8} + \frac{1}{8} \quad (by \text{ lemma 1})$$
$$\le \frac{1}{4}$$

instances with large k

To Summarize

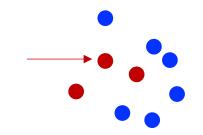
We proved

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]}$, where *c* is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k/3] P_a instances such that

$$\Pr(I^T \neq a | P_a) \ge 1/2$$

Notably, this theorem does not hold for randomized algorithm since the $[k/3] P_a$ instances may be different under different algorithm randomness



Any deterministic algorithm "fails" at a constant fraction of constructed instances

To Summarize

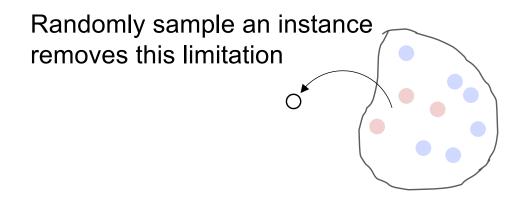
We proved

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]}$, where *c* is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k/3] P_a instances such that

$$\Pr(I^T \neq a | P_a) \ge 1/2$$

Notably, this theorem does not hold for randomized algorithm since the $[k/3] P_a$ instances may be different under different algorithm randomness



Any deterministic algorithm "fails" at a constant fraction of constructed instances

To Summarize

We proved

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]}$, where *c* is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k/3] P_a instances such that

 $\Pr(I^T \neq a | P_a) \ge 1/2$

Notably, this theorem does not hold for randomized algorithm since the $[k/3] P_a$ instances may be different under different algorithm randomness

Corollary: Consider any BAI algorithm (possibly randomized) running on a uniformly randomly sampled instance from set $\{P_a\}_{a \in [k]}$ with $T \leq \frac{ck}{\epsilon^2}$. Then $\Pr(I^T \neq i^*) \geq \frac{1}{6}$ where probability is over random choice of instance P_a , randomness of rewards and the algorithm.

Technical Preparations

Detour: Best-Arm Identification (BAI) Lower Bounds

MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon T and number of arms k.

For any bandit algorithm, running on a uniformly randomly sampled instance from $\{P_a\}_{a \in [k]}$ with $\epsilon = \sqrt{ck/T}$ for a sufficiently small constant c, we have $\mathbb{E}(R^T) \ge \Omega(\sqrt{kT})$

where expectation is over choice of instance P_a , randomness in rewards and Algo.

Proof.

- ▶ Note that $T = ck/\epsilon^2$ by our choice of ϵ
- ➤ Previous corollary says any algorithm running on the stated random instance satisfies $Pr(I^t \neq i^*) \ge \frac{1}{6}$ for any $t \le ck/\epsilon^2 (=T)$
- ➤ This means we suffer expected regret ≥ $\frac{1}{6} \times \frac{\epsilon}{2}$ at each round $t \le T$ since in the constructed instance, any sub-optimal arm has $\Delta = \epsilon/2$
- In total, we have

$$\mathbb{E}(R^T) \ge \frac{\epsilon}{12} \times T = \Omega(\sqrt{kT})$$

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon *T* and number of arms *k*.

For any bandit algorithm, running on a uniformly randomly sampled instance from $\{P_a\}_{a \in [k]}$ with $\epsilon = \sqrt{ck/T}$ for a sufficiently small constant c, we have $\mathbb{E}(R^T) \ge \Omega(\sqrt{kT})$

where expectation is over choice of instance P_a , randomness in rewards and Algo.

Remarks.

- This is called "worst-case lower bound"
 - You designed an algorithm;
 - Someone tries to "stress test" your algorithm by trying to feeding in the most challenging instance
 - The bound captures the best you can do under such challenge
- Also known as "minimax lower bound"

min max Regret(Algo|Ins) Algorithm Instance

Technical Preparations

Detour: Best-Arm Identification (BAI) Lower Bounds

MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

That is, remove that "max" in "minimax lower bound", and derive a bound for every instance

Instance-Dependent Regret Lower Bound

Rough format of the statement

"For any MAB problem instance *P* and time horizon *T*, no algorithm can achieve regret $\mathbb{E}(R^T) = o(Time_{P,T})$ "

>However, this claim is clearly not true \rightarrow why?

- Consider a trivial algorithm Alg_a which always pulls arm a
- One of $\{Alg_a\}_{a \in [k]}$ has 0 regret

To have a meaningful result, we need to rule out such "pure luck" algorithms that fail miserably in general, but do well occasionally

Instance-Dependent Regret Lower Bound

Theorem 2. Consider any MAB algorithm that satisfies

 $\mathbb{E}(R^T) \leq O(C_{P,\alpha} T^{\alpha})$ for any $\alpha > 0$ and any instance *P*.

Then for any problem instance *P*, there exists a time T_0 such that for any $T \ge T_0$, we have

$$\mathbb{E}(R^T) \ge \mu^* (1 - \mu^*) \sum_{i \neq i^*} \frac{\ln T}{\Delta_i}$$

>This is the restriction on the algorithms that we consider

- That is, these are reasonable algorithms that attempted to solve all instances
- This bound shows that UCB's gap-dependent regret bound is tight order-wise

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>