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Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline
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Lower Bounds: What and Why? 

We look to derive results of form like
                       Regret ≥ 𝐶 𝐾𝑇           for some constant 𝐶

or equivalently, Regret = Ω( 𝐾𝑇)

This helps to understand what we cannot achieve – i.e., our limits
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Lower Bounds: What and Why? 

We look to derive results of form like
                       Regret ≥ 𝐶 𝐾𝑇           for some constant 𝐶

or equivalently, Regret = Ω( 𝐾𝑇)

Ø If you have learned computational hardness (e.g., NP-hardness), 
that shares a similar spirit but very different flavor 

Ø Computational lower bounds are mostly conditional
• E.g., 3SAT takes at least exponential time to solve, if P ≠ NP
• P ≠ NP is an assumption 

Ø The bound we will show for MAB is unconditional
• i.e., they are facts that do not require any assumption
• Proofs here will mostly uses information theory

This helps to understand what we cannot achieve – i.e., our limits
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KL-Divergence 

Remarks

ØSimilarly defined for continuous domain, though not needed for now

Ø It is not symmetric: 𝐾𝐿 𝑝, 𝑞 ≠ 𝐾𝐿 𝑞, 𝑝

Ø  Closely related to entropy; also named “relative entropy”

ØWidely used in practice for measuring distribution distance (e.g., it is the 
default regularizer for fine-tuning LLMs) 

Definition (KL-Divergence). For any two distributions 𝑝, 𝑞 supported on 
discrete set 𝑋, their Kullback–Leibler (KL) divergence is defined as

𝐾𝐿 𝑝, 𝑞 = )
!∈#

𝑝 𝑥 ln
𝑝(𝑥)
𝑞(𝑥)

	= 𝔼!∼% ln
𝑝(𝑥)
𝑞(𝑥)

A useful quantity that measures “distance” between two distributions 
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KL-Divergence:  An Example 

Ø𝑅𝐶! is a Bernoulli random variable with 𝑝 = (1 + 𝜖)/2

ØCalculating KL-divergence

Definition. (Biased Random Coins). For any 𝜖 ∈ [− &
'
, &
'
], let 𝑅𝐶( be the 

binary random coin with 𝜖/2 bias -- i.e., it takes value 1/head with prob 
&)(
'

, and 0/tail otherwise. 

𝐾𝐿 𝑅𝐶( , 𝑅𝐶* =
1 + 𝜖
2

ln
(1 + 𝜖)/2
1/2

+
1 − 𝜖
2

ln
(1 − 𝜖)/2
1/2

Claim: 𝐾𝐿 𝑅𝐶( , 𝑅𝐶* ≤ 2𝜖' and 𝐾𝐿 𝑅𝐶*, 𝑅𝐶( ≤ 𝜖' for any 𝜖 ∈ (0,½)  

Remark: this 𝜖' term turns out to be the reason of the Ω(𝑇
!
") lower bound    

Claim’s proof deferred to HW.
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Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties
a. Gibb’s Inequality: 𝐾𝐿 𝑝, 𝑞 ≥ 0, with equality if and only if 𝑝 = 𝑞
                                   b. Chain rule for product distributions: For 𝑖 = 1,⋯ , 𝑛, let 𝑝+ , 𝑞+ be 

two distributions supported on 𝑋+. 𝑝 = 𝑝&×𝑝'⋯×𝑝,, 𝑞 = 𝑞&×𝑞'⋯×𝑞, 
be their product distributions. Then 𝐾𝐿(𝑝, 𝑞) 	= 	∑+-&, 𝐾𝐿(𝑝+ , 𝑞+) .	

c. Pinsker’s inequality: For any event 𝐴 ⊆ 𝑋, we have 
2 𝑝 𝐴 − 𝑞 𝐴 ' ≤ 𝐾𝐿(𝑝, 𝑞)

Remarks.
ØThe probability difference of any event is upper bounded by 𝑂( 𝐾𝐿(𝑝, 𝑞))

Ø Illustrates why it captures “divergence” between two distributions
ØPinsker’s inequality implies 𝐾𝐿 𝑅𝐶*, 𝑅𝐶( ≥ 𝜖'/2 (compare to previous 

claim  𝐾𝐿 𝑅𝐶*, 𝑅𝐶( ≤ 𝜖') 
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Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties
a. Gibb’s Inequality: 𝐾𝐿 𝑝, 𝑞 ≥ 0, with equality if and only if 𝑝 = 𝑞
                                   b. Chain rule for product distributions: For 𝑖 = 1,⋯ , 𝑛, let 𝑝+ , 𝑞+ be 

two distributions supported on 𝑋+. 𝑝 = 𝑝&×𝑝'⋯×𝑝,, 𝑞 = 𝑞&×𝑞'⋯×𝑞, 
be their product distributions. Then 𝐾𝐿(𝑝, 𝑞) 	= 	∑+-&, 𝐾𝐿(𝑝+ , 𝑞+) .	

c. Pinsker’s inequality: For any event 𝐴 ⊆ 𝑋, we have 
2 𝑝 𝐴 − 𝑞 𝐴 ' ≤ 𝐾𝐿(𝑝, 𝑞)

Proofs deferred to HW1. 
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Exercise with KL & a Warm-up 
Lower-Bound Problem

How many coin flips are needed to confidently tell it is fair 
or not?



10

A Fair Coin or Not? 

ØYou know a coin is either 𝑅𝐶" or 𝑅𝐶! 
• 𝑅𝐶* is called a fair coin, and 𝑅𝐶( has 𝜖/2 bias 

ØYou can flip the coin 𝑇 times

ØBased on your observations, you have a (deterministic) decision 
rule to decide it is fair or biased:

                           Rule: 0,1 # → {fair, biased}
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A Fair Coin or Not? 

ØYou know a coin is either 𝑅𝐶" or 𝑅𝐶! 
• 𝑅𝐶* is called a fair coin, and 𝑅𝐶( has 𝜖/2 bias 

ØYou can flip the coin 𝑇 times

ØBased on your observations, you have a (deterministic) decision 
rule to decide it is fair or biased:

                           Rule: 0,1 # → {fair, biased}

Question: how large your 𝑇 needs to at least be for you to 
be correct with high prob in the following sense?
        Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = fair	 𝑅𝐶" ≥ 3/4	 (1)
        Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = biased	 𝑅𝐶! ≥ 3/4     (2)
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A Fair Coin or Not? 

Proof
ØThe decision rule is deterministic, so there is a subset 𝐴* ⊆ 0,1 . of 

events such that 
  Rule(𝑥) = fair         for any 𝑥 ∈ 𝐴*
  Rule(𝑥) = biased   for any 𝑥 ∉ 𝐴*
Ø  Following accuracy requirement implies 𝐴* happens with probability ≥
3/4 under 𝑅𝐶*, but happens with prob ≤ 1/4 under 𝑅𝐶( 

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.  

Question: how large your 𝑇 needs to at least be for you to 
be correct with high prob in the following sense?
        Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = fair	 𝑅𝐶" ≥ 3/4	 (1)
        Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = biased	 𝑅𝐶! ≥ 3/4     (2)
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A Fair Coin or Not? 

Proof
ØThe decision rule is deterministic, so there is a subset 𝐴* ⊆ 0,1 . of 

events such that 
  Rule(𝑥) = fair         for any 𝑥 ∈ 𝐴*
  Rule(𝑥) = biased   for any 𝑥 ∉ 𝐴*
Ø  Following accuracy requirement implies 𝐴* happens with probability ≥
3/4 under 𝑅𝐶*, but happens with prob ≤ 1/4 under 𝑅𝐶( 

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.  

Next we employ properties of KL to show 𝑇 has to 
be large to achieve the above inequality 

That is, Pr 𝐴* 𝑅𝐶* − Pr(𝐴*|𝑅𝐶() ≥ 3/4 − 1/4 = 1/2 
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A Fair Coin or Not? 

Proof (con’d)

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.  

ØLet 𝑝+ = 𝑅𝐶*	, 𝑞+ = 𝑅𝐶(; consider product distributions 𝑝 = Π+-&. 𝑝+, 𝑞 =
Π+-&. 𝑞+
Ø𝑝, 𝑞 are measures over 0,1 . ⊇ 𝐴*, so Pinsker’s inequality told us

𝐾𝐿 𝑞, 𝑞 = 	∑+-&. 𝐾𝐿(𝑝+ , 𝑞+) ≤ 𝑇𝜖' 

𝐾𝐿 𝑝, 𝑞 ≥ 2 Pr 𝐴* 𝑅𝐶* − Pr 𝐴* 𝑅𝐶( '

That is, Pr 𝐴* 𝑅𝐶* − Pr(𝐴*|𝑅𝐶() ≥ 3/4 − 1/4 = 1/2 

ØEmploy chain rule to upper bound KL:  

ØCombing these two inequalities we have  

𝑇 ≥
𝐾𝐿 𝑝, 𝑞

𝜖'
≥

1
2𝜖'

≥ 1/2
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A Fair Coin or Not? 

Proof (con’d)

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.  

ØLet 𝑝+ = 𝑅𝐶*	, 𝑞+ = 𝑅𝐶(; consider product distributions 𝑝 = Π+-&. 𝑝+, 𝑞 =
Π+-&. 𝑞+
Ø𝑝, 𝑞 are measures over 0,1 . ⊇ 𝐴*, so Pinsker’s inequality told us

𝐾𝐿 𝑞, 𝑞 = 	∑+-&. 𝐾𝐿(𝑝+ , 𝑞+) ≤ 𝑇𝜖' 

𝐾𝐿 𝑝, 𝑞 ≥ 2 Pr 𝐴* 𝑅𝐶* − Pr 𝐴* 𝑅𝐶( '

ØEmploy chain rule to upper bound KL:  

ØCombing these two inequalities we have  

𝑇 ≥
𝐾𝐿 𝑝, 𝑞

𝜖'
≥

1
2𝜖'

Remarkably, the proof applies to any decision rule; 
fundamentally, it is because Pinsker’s inequality holds for any 𝐴"

≥ 1/2

That is, Pr 𝐴* 𝑅𝐶* − Pr(𝐴*|𝑅𝐶() ≥ 3/4 − 1/4 = 1/2 
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Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline
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A Variant of MAB: Best-Arm Identification (BAI)

ØSame setup as MAB, but task is to identify best arm 𝑖∗(= argmax
+∈[1]

𝜇+)

ØSame strategy process of pulling arms 𝑖&, 𝑖', … , 𝑖3, … , 𝑖. 

ØGiven 𝑇 rounds of opportunities, performance is measured by probability 
of success Pr(𝐼. = 𝑖∗)

. . . 
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷' 
𝜇& 𝜇4 𝜇1

. . . 
: 	𝑟1 ∼ 𝐷1 
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A Variant of MAB: Best-Arm Identification (BAI)

ØSame setup as MAB, but task is to identify best arm 𝑖∗(= argmax
+∈[1]

𝜇+)

ØSame strategy process of pulling arms 𝑖&, 𝑖', … , 𝑖3, … , 𝑖. 

ØGiven 𝑇 rounds of opportunities, performance is measured by probability 
of success Pr(𝐼. = 𝑖∗)

. . . 
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷' 
𝜇& 𝜇4 𝜇1

. . . 
: 	𝑟1 ∼ 𝐷1 

Ø Clearly, if 𝑇 is very large, we can easily succeed with high prob.

Ø Goal Next: understand how large 𝑇 needs to be in order to guarantee 
reasonable success on any problem instance

 
By proving a statement of form  “if 𝑇 ≤? ?, then for any algorithm will have at 
least constant probability of failing to find optimal arm on some instance”
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Imaging the Difficult Instances…

ØAll arms have equal mean, except one of them that is slightly higher
•  Difficult since every sub-optimal arm is equally confusing

ØHopefully, each arm has large variance so rewards are random enough 
to “hide” the true mean
• Interestingly, Bernoulli distributions (i.e., biased coins) turn out to 

already be sufficiently hard

. . . 
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷' 
𝜇& 𝜇4 𝜇1

. . . 
: 	𝑟1 ∼ 𝐷1 

What instance would be difficult for BAI? 
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Construction of Lower Bound Instances

. . . 
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷' 
𝜇& 𝜇4 𝜇1

ØEach 𝐷+ is Bernoulli

ØAll of them are 𝑅𝐶*, except one arm 𝑎 is 𝑅𝐶( 

. . . 
: 	𝑟1 ∼ 𝐷1 

= 1/2 = 1/2= (1 + 𝜖)/2
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Construction of Lower Bound Instances

. . . 
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷' 
𝜇& 𝜇4 𝜇1

ØEach 𝐷+ is Bernoulli

ØAll of them are 𝑅𝐶*, except one arm 𝑎 is 𝑅𝐶( 

. . . 
: 	𝑟1 ∼ 𝐷1 

= 1/2 = 1/2= (1 + 𝜖)/2

Remark. 

This is not a single instance, but rather a set of 𝑘 instances – 
each 𝑎 ∈ [𝑘] correspond to one problem instance 𝑃4 

Formally, 𝑃4 = {𝑘	bandits	with	𝐷4 = 𝑅𝐶( , all	other	𝐷+ = 𝑅𝐶*}
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A Note on Lower Bound Proof Approaches

Ø Generally, two approaches to show an algorithm can perform 
bad on some instance
1. Show that an algorithm does bad on some instance
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A Note on Lower Bound Proof Approaches

Ø Generally, two approaches to show an algorithm can perform 
bad on some instance
1. Show that an algorithm does bad on some instance
2. Craft a set of instance, then randomly sample one for the algorithm 

to solve; show that the algo’s expected performance is bad
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A Note on Lower Bound Proof Approaches

Ø Generally, two approaches to show an algorithm can perform 
bad on some instance
1. Show that an algorithm does bad on some instance
2. Craft a set of instance, then randomly sample one for the algorithm 

to solve; show that the algo’s expected performance is bad

Ø (2)⇒ (1) because if an algorithm perform bad in expectation, it must 
have performed bad in at least one instance on the support

Ø A stronger version of (1) ⇒ (2): 
if an algo does bad on a constant fraction of instances, then it has 
constant probability to perform bad on a randomly sampled instance

Ø (1) suffices for a lower bound proof, but we use (2) often due to proof 
convenience

Ø For our problem, we will use the set of instances 𝑃4 4∈[1]
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Lower Bounds for BAI

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1], 
where 𝑐	 is a small enough absolute constant. 
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉ 
𝑃4 instances such that  

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

𝑃4 = {𝑘	bandits	with	𝐷4 = 𝑅𝐶( , all	other	𝐷+ = 𝑅𝐶*}
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Lower Bounds for BAI

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1], 
where 𝑐	 is a small enough absolute constant. 
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉ 
𝑃4 instances such that  

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

Corollary: Consider any BAI algorithm (possibly randomized) running on 
a uniformly randomly sampled instance from set 𝑃4 4∈[1] with 𝑇 ≤ 51

("
. 

Then Pr(𝐼. ≠ 𝑖∗) ≥ &
6
 where probability is over random choice of instance 

𝑃4, randomness of rewards and the algorithm. 

Ø For deterministic algo, we have Pr(𝐼. ≠ 𝑎|𝑃4) ≥ 1/2 for at least 1/3 of 
instances in 𝑃4 4∈[1]  ⇒ Pr(𝐼. ≠ 𝑖∗) ≥ &

'
× &
7
= &

6
 on a sampled instance 

Ø Any randomized algorithm is a distribution over deterministic algorithm 

⇒ Pr(𝐼. ≠ 𝑖∗) ≥ &
6
  by taking expectation over algo’ randomness
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Next: Proof of Theorem 0 in 3 Steps
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Step 1: Converting the question to an instance testing 
problem by introducing a benchmark scenario

Introduce instance 𝑃", where all 𝑘 arms are independent 𝑅𝐶" (i.e., 
non-biased coins)

ØIntuitions for remaining proofs
• We say an arm 𝑗 ∈ [𝑘] is “neglected” by the algorithm if (1) it was not 

played too often; (2) it has low probability to be the final output 𝐼.  

because not all arms can be played a lot, simply by counting

• Will show under any deterministic algorithm to 𝑃*, a constant 
fraction of arms are neglected
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Step 1: Converting the question to an instance testing 
problem by introducing a benchmark scenario

Introduce instance 𝑃", where all 𝑘 arms are independent 𝑅𝐶" (i.e., 
non-biased coins)

ØIntuitions for remaining proofs
• We say an arm 𝑗 ∈ [𝑘] is “neglected” by the algorithm if (1) it was not 

played too often; (2) it has low probability to be the final output 𝐼.  

because not all arms can be played a lot, simply by counting
• Now consider any neglected arm under the same algorithm in 𝑃8

𝐾𝐿(𝑃8 , 𝑃*) is likely small since they only slightly differ on arm 𝑗,  
Pinsker’s Inequality told us Pr 𝐼. ≠ 𝑗 𝑃8 − Pr(𝐼. ≠ 𝑗|𝑃*) must be small 

Tricky part is to figure out how small this could tightly be! 

• Will show under any deterministic algorithm to 𝑃*, a constant 
fraction of arms are neglected
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Step 2: Characterizing “neglected arms” under any 
deterministic algorithm on benchmark instance 𝑃q

ØThat is, 𝐽 contains all arms that are “neglected” in the sense of 
property 2) and 3) 

ØProperty 1) says that 𝐽 has size at least 𝑘/3

Lemma 1: For any deterministic algorithm on 𝑃*, there is a subset 𝐽 ⊂ [𝑘] 
of arms such that
1) 𝐽 ≥ 𝑘/3

2) For any 𝑗 ∈ 𝐽, 𝔼 𝑁8.|𝑃* ≤ 7.
1

3) For any 𝑗 ∈ 𝐽, Pr 𝐼. = 𝑗|	𝑃* ≤ 7
1
 

Recall: 𝐼. is the (random) arm pulled at last round 𝑇
            𝑁8. is the number of times arm 𝑗 is pulled until round 𝑇
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Step 2: Characterizing “neglected arms” under any 
deterministic algorithm on benchmark instance 𝑃q

Intuition of the proof

ØFollows from counting argument:
• At least 2𝑘/3 arms satisfy property 2) since ∑8-&. 𝑁8. = 𝑇 is always true
• At least 2𝑘/3 arms satisfy property 3) since ∑8-&. Pr 𝐼8. = 𝑗 = 1 

Lemma 1: For any deterministic algorithm on 𝑃*, there is a subset 𝐽 ⊂ [𝑘] 
of arms such that
1) 𝐽 ≥ 𝑘/3

2) For any 𝑗 ∈ 𝐽, 𝔼 𝑁8.|𝑃* ≤ 7.
1

 

3) For any 𝑗 ∈ 𝐽, Pr 𝐼. = 𝑗|	𝑃* ≤ 7
1
 

Formal proof left to HW1!



32

Step 2: Characterizing “neglected arms” under any 
deterministic algorithm on benchmark instance 𝑃q

Lemma 1: For any deterministic algorithm on 𝑃*, there is a subset 𝐽 ⊂ [𝑘] 
of arms such that
1) 𝐽 ≥ 𝑘/3

2) For any 𝑗 ∈ 𝐽, 𝔼 𝑁8.|𝑃* ≤ 7.
1

 

3) For any 𝑗 ∈ 𝐽, Pr 𝐼. = 𝑗|	𝑃* ≤ 7
1
 

Corollary:  Property 2) above implies Pr 𝑁8. ≤
'9.
1
|	𝑃* ≥ :

;

Proof. By Markov’s inequality

Pr 𝑁 > 𝑥 ≤
𝔼 𝑁
𝑥

≤ 1/8 By plugging in property 2)

Pr 𝑁8. >
24𝑇
𝑘

|	𝑃* ≤
𝔼 𝑁8.|𝑃*
24𝑇/𝑘

This implies the corollary

Pr 𝑁8. ≤
'9.
1
|	𝑃* ≥ :

;
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

The intuitive idea is straightforward
– Want to show 𝐾𝐿 divergence 𝐾𝐿(𝑃*, 𝑃8) is upper bounded 
– Pinsker’s Inequality then implies if 𝑗 is neglected under 𝑃*, it will be 
under 𝑃8 as well      

Technical argument needs careful treatment

– Simple argument yields 𝑇 ≤ 5
("

 

– To get the stronger 𝑇 ≤ 51
("

 bound, we need to carefully define the 
(random) events that determine a BAI algorithm’s behavior       
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø A deterministic BAI algorithm maps any observed reward 
sequence thus far to the next to-be-pulled arm

Alg: 0,1 $ → [𝑘]
Ø Such an Alg can be viewed as an adaptive way to open exactly 𝑇 

cells of a random reward table

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø A deterministic BAI algorithm maps any observed reward 
sequence thus far to the next to-be-pulled arm

Alg: 0,1 $ → [𝑘]
Ø Such an Alg can be viewed as an adaptive way to open exactly 𝑇 

cells of a random reward table

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø We only care about event Pr(𝐼# = 𝑗)
Ø Randomness purely comes from this random reward table

• Since Alg is deterministic – it maps a sequence of 𝑇 rewards to a 
deterministic choice of 𝐼.

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø We only care about event Pr(𝐼# = 𝑗)
Ø Randomness purely comes from this random reward table

• Since Alg is deterministic – it maps a sequence of 𝑇 rewards to a 
deterministic choice of 𝐼.

• These 𝑇 rewards can be from different rows/arms

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø Bad news: generally, every reward cell below can possibly affect 
the algorithm
• We particularly do not like that all 𝑇 cells in 𝑗’s row can affect Alg

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3

𝑇
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø Bad news: generally, every reward cell below can possibly affect 
the algorithm
• We particularly do not like that all 𝑇 cells in 𝑗’s row can affect Alg
         ⇒ too much randomness that makes 𝐾𝐿(𝑃*, 𝑃8) too large 

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3

𝑇

⇒ a non-tight bound 𝑐/𝜖'
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø Key idea: only consider first 𝑚 = min{'9.
1
, 𝑇} cells in 𝑗’th row, though 

allow other rows’ all random rewards (since they are equal under 𝑃*, 𝑃8) 

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3

𝑇
𝑚

Formally, consider From Lemma 1, these are precisely 
the condition of “neglected arms” 

Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø Key idea: only consider first 𝑚 = min{'9.
1
, 𝑇} cells in 𝑗’th row, though 

allow other rows’ all random rewards (since they are equal under 𝑃*, 𝑃8) 

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms 

𝑁+
3

𝑇
𝑚

Formally, consider 

Pr 𝐼3 = 𝑗 ≠ Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

From Lemma 1, these are precisely 
the condition of “neglected arms” 
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

Ø Key idea: only consider first 𝑚 = min{'9.
1
, 𝑇} cells in 𝑗’th row, though 

allow other rows’ all random rewards (since they are equal under 𝑃*, 𝑃8) 

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

𝑁+
3

𝑇
𝑚

Pr 𝐼3 = 𝑗 = +	Pr(𝐼3 = 𝑗	 AND	 𝑁8. > 𝑚)Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

Formally, consider 
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Both events depend only on first 𝑚 rewards of row 𝑗

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

𝑁+
3 𝑚

Pr 𝐼3 = 𝑗 = +	Pr(𝐼3 = 𝑗	 AND	 𝑁8. > 𝑚)Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

𝑁+
3 𝑚

Pr 𝐼3 = 𝑗 = +	Pr(𝐼3 = 𝑗	 AND	 𝑁8. > 𝑚)Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Let 𝑞83 = 𝑅𝐶( for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83  and a  

similarly defined 𝑞
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By chain rule

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Let 𝑞83 = 𝑅𝐶( for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83  and a  

similarly defined 𝑞

𝐾𝐿 𝑝, 𝑞 = ∑+<8,3∈[.]𝐾𝐿(𝑝+
3, 𝑞+

3) + ∑3∈[>]𝐾𝐿(𝑝8
3, 𝑞8

3) 

= ∑+<8,3∈[.]𝐾𝐿(𝑅𝐶*, 𝑅𝐶*) + ∑3∈[>]𝐾𝐿(𝑅𝐶*, 𝑅𝐶() 

= 𝑚	𝐾𝐿(𝑅𝐶*, 𝑅𝐶()

≤
24𝑇
𝑘

𝜖' Since 𝑚 = min{'9.
1
, 𝑇}

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

Pr 𝐼3 = 𝑗
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Let 𝑞83 = 𝑅𝐶( for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83  and a  

similarly defined 𝑞

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

Pr 𝐼3 = 𝑗

⇒ | Pr 𝐴 𝑃* − Pr 𝐴 𝑃8 | ≤ 𝐾𝐿 𝑝, 𝑞 /2 ≤
1
8
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Let 𝑞83 = 𝑅𝐶( for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83  and a  

similarly defined 𝑞

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

Pr 𝐼3 = 𝑗

⇒ | Pr 𝐴 𝑃* − Pr 𝐴 𝑃8 | ≤ 𝐾𝐿 𝑝, 𝑞 /2 ≤
1
8

Pr 𝐴& 𝑃8 ≤ Pr 𝐴& 𝑃* +
1
8

≤
3
𝑘
+
1
8

≤
1
4

By considering 
instances with large 𝑘

Pr 𝐴' 𝑃8 ≤ Pr 𝐴' 𝑃* +
1
8

≤
1
8
+
1
8

(by lemma 1) (by lemma 1)

≤
1
4
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Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any 
neglected arm 𝑗 

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Let 𝑞83 = 𝑅𝐶( for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇 
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83  and a  

similarly defined 𝑞

Pr 𝐼3 = 𝑗

⇒ | Pr 𝐴 𝑃* − Pr 𝐴 𝑃8 | ≤ 𝐾𝐿 𝑝, 𝑞 /2 ≤
1
8

Pr 𝐴& 𝑃8 ≤ Pr 𝐴& 𝑃* +
1
8

≤
3
𝑘
+
1
8

≤
1
4

By considering 
instances with large 𝑘

Pr 𝐴' 𝑃8 ≤ Pr 𝐴' 𝑃* +
1
8

≤
1
8
+
1
8

(by lemma 1) (by lemma 1)

≤
1
4

≤
1
2

on instance 𝑃8

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'
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To Summarize

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1], 
where 𝑐	 is a small enough absolute constant. 
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉ 
𝑃4 instances such that  

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

We proved 

Notably, this theorem does not hold for randomized algorithm since the 
⌈𝑘/3⌉ 𝑃4 instances may be different under different algorithm randomness

Any deterministic algorithm 
“fails” at a constant fraction 
of constructed instances
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To Summarize

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1], 
where 𝑐	 is a small enough absolute constant. 
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉ 
𝑃4 instances such that  

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

We proved 

Notably, this theorem does not hold for randomized algorithm since the 
⌈𝑘/3⌉ 𝑃4 instances may be different under different algorithm randomness

Any deterministic algorithm 
“fails” at a constant fraction 
of constructed instances

Randomly sample an instance 
removes this limitation
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To Summarize

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1], 
where 𝑐	 is a small enough absolute constant. 
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉ 
𝑃4 instances such that  

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

Corollary: Consider any BAI algorithm (possibly randomized) running on 
a uniformly randomly sampled instance from set 𝑃4 4∈[1] with 𝑇 ≤ 51

("
. 

We proved 

Then Pr(𝐼. ≠ 𝑖∗) ≥ &
6
 where probability is over random choice of instance 

𝑃4, randomness of rewards and the algorithm. 

Notably, this theorem does not hold for randomized algorithm since the 
⌈𝑘/3⌉ 𝑃4 instances may be different under different algorithm randomness
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Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline
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Regret Lower Bound for MAB

Theorem 1: Fixed time horizon 𝑇 and number of arms 𝑘. 
For any bandit algorithm, running on a uniformly randomly sampled instance 
from 𝑃4 4∈[1] with 𝜖 = 𝑐𝑘/𝑇 for a sufficiently small constant 𝑐, we have

Proof.
Ø Note that 𝑇 = 𝑐𝑘/𝜖' by our choice of 𝜖 
Ø Previous corollary says any algorithm running on the stated random 

instance satisfies Pr(𝐼3 ≠ 𝑖∗) ≥ &
6
  for any 𝑡 ≤ 𝑐𝑘/𝜖'(= 𝑇) 

Ø This means we suffer expected regret ≥ &
6
× (
'
 at each round 𝑡 ≤ 𝑇 since 

in the constructed instance, any sub-optimal arm has Δ = 𝜖/2 
Ø In total, we have 

𝔼 𝑅. ≥
𝜖
12
×𝑇 = Ω( 𝑘𝑇)

𝔼 𝑅. ≥ Ω( 𝑘𝑇)
where expectation is over choice of instance 𝑃!, randomness in rewards and Algo.  
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Regret Lower Bound for MAB

Remarks.
Ø This is called “worst-case lower bound”

• You designed an algorithm; 
• Someone tries to “stress test” your algorithm by trying to feeding in 

the most challenging instance
• The bound captures the best you can do under such challenge

Ø Also known as “minimax lower bound”
min

?@ABCDEFG	
max

IJKELJMN
	 𝑅𝑒𝑔𝑟𝑒𝑡(Algo|Ins)

Theorem 1: Fixed time horizon 𝑇 and number of arms 𝑘. 
For any bandit algorithm, running on a uniformly randomly sampled instance 
from 𝑃4 4∈[1] with 𝜖 = 𝑐𝑘/𝑇 for a sufficiently small constant 𝑐, we have

𝔼 𝑅. ≥ Ω( 𝑘𝑇)
where expectation is over choice of instance 𝑃!, randomness in rewards and Algo.  
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Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline

That is, remove that “max” in “minimax lower 
bound”, and derive a bound for every instance 
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Instance-Dependent Regret Lower Bound

ØHowever, this claim is clearly not true à why? 
• Consider a trivial algorithm Alg4 which always pulls arm 𝑎
• One of Alg4 4∈[1] has 0 regret

ØTo have a meaningful result, we need to rule out such “pure luck” 
algorithms that fail miserably in general, but do well occasionally

Rough format of the statement  

“For any MAB problem instance 𝑃 and time horizon 𝑇, no algorithm 
can achieve regret 𝔼 𝑅. = o(	𝑇𝑖𝑚𝑒O,. 	)”
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Instance-Dependent Regret Lower Bound

ØThis is the restriction on the algorithms that we consider
• That is, these are reasonable algorithms that attempted to solve all 

instances

ØThis bound shows that UCB’s gap-dependent regret bound is tight 
order-wise

Theorem 2. Consider any MAB algorithm that satisfies
                   𝔼 𝑅. ≤ O(𝐶O,P	𝑇^𝛼)        for any 𝛼 > 0 and any instance 𝑃.

Then for any problem instance 𝑃, there exists a time 𝑇* such that for any 
𝑇 ≥ 𝑇*, we have 
                                   𝔼 𝑅. ≥ 𝜇∗ 1 − 𝜇∗ ∑+<+∗

@J .
Q$
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