DATA 37200: Learning, Decisions, and Limits
(Winter 2025)

Lower Bounds for Stochastic MAB

Instructor: Haifeng Xu

Outline

» Technical Preparations
» Detour: Best-Arm Identification (BAl) Lower Bounds

» MAB Regret Lower Bounds
* |Instance-Independent Lower Bound

* |Instance-Dependent Lower Bounds

Lower Bounds:What and Why!?

We look to derive results of form like
Regret > CVKT for some constant C

or equivalently, Regret = Q(VKT)

This helps to understand what we cannot achieve —i.e., our limits

Lower Bounds:What and Why!?

We look to derive results of form like
Regret > CVKT for some constant C

or equivalently, Regret = Q(VKT)

This helps to understand what we cannot achieve —i.e., our limits

> If you have learned computational hardness (e.g., NP-hardness),
that shares a similar spirit but very different flavor

» Computational lower bounds are mostly conditional
« E.g., 3SAT takes at least exponential time to solve, if P + NP
« P # NP is an assumption

» The bound we will show for MAB is unconditional
* Ii.e., they are facts that do not require any assumption
* Proofs here will mostly uses information theory

KL-Divergence

A useful quantity that measures “distance” between two distributions

4)
Definition (KL-Divergence). For any two distributions p, g supported on

discrete set X, their Kullback—Leibler (KL) divergence is defined as

KL(p,q)=zp(x)ln Zgg = Expl [p(x)

xXeX
. /

Remarks

> Similarly defined for continuous domain, though not needed for now
> It is not symmetric: KL(p,q) + KL(q, p)

> Closely related to entropy; also named “relative entropy”

> Widely used in practice for measuring distribution distance (e.qg., it is the
default regularizer for fine-tuning LLMs)

KL-Divergence: An Example

()

Definition. (Biased Random Coins). Forany € € [— % %], let RC,. be the

binary random coin with €/2 bias -- i.e., it takes value 1/head with prob

%, and 0/tail otherwise.

\. J

>»RC, is a Bernoulli random variable withp = (1 4+ €)/2

> Calculating KL-divergence

KL(RC,, RC,) = >

1+e. 1+€)/217 1—€¢. [(1—¢€)/2
ln[] + ln[]
2 1/2 1/2
Claim: KL(RC.,RC,) < 2€? and KL(RCy,RC.) < €2 for any € € (0, %)

1
Remark: this €2 term turns out to be the reason of the Q(T2) lower bound
Claim’s proof deferred to HW.

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties
a. Gibb’s Inequality: KL(p,q) = 0, with equality if and only if p = q

b. Chain rule for product distributions: Fori = 1,:--,n, let p;, q; be
two distributions supported on X;. p = p;Xp, - Xpy,, @ = q1Xq5 -+ Xqy,
be their product distributions. Then KL(p,q) = Y KL(p;i, qi) -

c. Pinsker’s inequality: For any event A € X, we have

2[p(A) — q(A)]* < KL(p, q)

Remarks.

> The probability difference of any event is upper bounded by 0(\/KL(p, q))
> lllustrates why it captures “divergence” between two distributions

» Pinsker’s inequality implies KL(RCy, RC,.) = €% /2 (compare to previous
claim KL(RCy,RC,) < €?)

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties
a. Gibb’s Inequality: KL(p,q) = 0, with equality if and only if p = q

b. Chain rule for product distributions: Fori = 1,:--,n, let p;, q; be
two distributions supported on X;. p = p;Xp, - Xpy,, @ = q1Xq5 -+ Xqy,
be their product distributions. Then KL(p,q) = Xi-; KL(pi, q;) -

c. Pinsker’s inequality: For any event A € X, we have

2[p(A) — q(A)]* < KL(p, q)

Proofs deferred to HW1.

Exercise with KL & a Warm-up
Lower-Bound Problem

How many coin flips are needed to confidently tell it is fair
or not?

A Fair Coin or Not!

»You know a coin is either RC, or RC,
- RC, is called a fair coin, and RC, has €/2 bias

>You can flip the coin T times

»>Based on your observations, you have a (deterministic) decision
rule to decide it is fair or biased:

Rule: {0,1}T - {fair, biased}

10

A Fair Coin or Not!

»You know a coin is either RC, or RC,
- RC, is called a fair coin, and RC, has €/2 bias

>You can flip the coin T times

»>Based on your observations, you have a (deterministic) decision
rule to decide it is fair or biased:

Rule: {0,1}T - {fair, biased}

Question: how large your T needs to at least be for you to
be correct with high prob in the following sense?

Pr|Rule(observations) = fair | RCy] = 3/4 (1)
Pr[Rule(observations) = biased | RC.] = 3/4 (2)

11

A Fair Coin or Not!

1

Claim: Fix a decision rule that satisfies (1) and (2). Then T > T

Proof

» The decision rule is deterministic, so there is a subset 4, € {0,1}! of
events such that

Rule(x) = fair forany x € A,
Rule(x) = biased forany x & A,

> Following accuracy requirement implies A, happens with probability >
3/4 under RC,, but happens with prob < 1/4 under RC,

Question: how large your T needs to at least be for you to
be correct with high prob in the following sense?

Pr|Rule(observations) = fair | RCy] = 3/4 (1)
Pr[Rule(observations) = biased | RC.] = 3/4 (2)

12

A Fair Coin or Not!

1

Claim: Fix a decision rule that satisfies (1) and (2). Then T > T

Proof

» The decision rule is deterministic, so there is a subset 4, € {0,1}! of
events such that

Rule(x) = fair forany x € A,
Rule(x) = biased forany x & A,

> Following accuracy requirement implies A, happens with probability >
3/4 under RC,, but happens with prob < 1/4 under RC,

That is, Pr(4,|RCy) — Pr(4,|RC.) = 3/4 —1/4 = 1/2

Next we employ properties of KL to show T has to
be large to achieve the above inequality

13

A Fair Coin or Not!

1

Claim: Fix a decision rule that satisfies (1) and (2). Then T > S

Proof (con’d)
That is, Pr(4,|RCy) — Pr(4,|RC.) = 3/4—1/4 =1/2
>Let p; = RC,, q; = RC,; consider product distributions p = II]_,p;, ¢ =
H£1%
>p, q are measures over {0,1}7 2 4,, so Pinsker’s inequality told us
KL(p,q) = 2|Pr(4,|RCy) — Pr(4,|RC)|?> =1/2

»Employ chain rule to upper bound KL.:
KL(q,q) = Yi_;1 KL(p;, q;) < T€?

»Combing these two inequalities we have

KL
S (»,q) S 1
€2 2€2

14

A Fair Coin or Not!

1

Claim: Fix a decision rule that satisfies (1) and (2). Then T > S

Proof (con’d)

That is, Pr(4,|RCy) — Pr(4,|RC.) = 3/4 —1/4 = 1/2

>Let p; = RC,, q; = RC,; consider product distributions p = II]_,p;, ¢ =

l_[iT=1CIi

>p, q are measures over {0,1}7 2 4,, so Pinsker’s inequality told us
KL(p,q) = 2|Pr(4,|RCy) — Pr(4,|RC)|?> = 1/2

» Empblov chain rule to unoer bound KL :

Remarkably, the proof applies to any decision rule;
fundamentally, it is because Pinsker’s inequality holds for any A,

KL
> ,9) > 1
€2 2€2

15

Outline

» Technical Preparations
» Detour: Best-Arm ldentification (BAI) Lower Bounds

» MAB Regret Lower Bounds
* |Instance-Independent Lower Bound

* |Instance-Dependent Lower Bounds

16

A Variant of MAB: Best-Arm Identification (BAI)

1: 71~ Dy k: 1, ~ Dy
H1 Hk

> Same setup as MAB, but task is to identify best arm i*(= arg rg[a}g](Ui)
l

» Same strategy process of pulling arms i?,i?, ..., i¢, ..., i7

> Given T rounds of opportunities, performance is measured by probability
of success Pr(IT = i*)

17

A Variant of MAB: Best-Arm Identification (BAI)

%3 . . M
1: 4~ D, k: 1.~ Dy
H1 Hi

> Same setup as MAB, but task is to identify best arm i*(= arg rg[a}g](Ui)
l

» Same strategy process of pulling arms i?,i?, ..., i¢, ..., i7

> Given T rounds of opportunities, performance is measured by probability
of success Pr(IT = i*)

~
» Clearly, if T is very large, we can easily succeed with high prob.

» Goal Next: understand how large T needs to be in order to guarantee
reasonable success on any problem instance

By proving a statement of form “if T <??, then for any algorithm will have at
least constant probability of failing to find optimal arm on some instance”

Imaging the Difficult Instances...

IC\ETf
E = = ﬁ/
E = = 2 |1
e
a:ra~D2 k:T'k"’Dk
Ha Hi

What instance would be difficult for BAI?

> All arms have equal mean, except one of them that is slightly higher
Difficult since every sub-optimal arm is equally confusing

> Hopefully, each arm has large variance so rewards are random enough
to “hide” the true mean

- Interestingly, Bernoulli distributions (i.e., biased coins) turn out to
already be sufficiently hard

19

Construction of Lower Bound Instances

E = = 1;5?/.
E = ‘Q ;E 9
k: T ~ Dk
Hao = (1+€)/2 U =1/2

> Each D; is Bernoulli

> All of them are RC,, except one arm a is RC,

20

Construction of Lower Bound Instances

. . Lel
k: 1.~ Dy
Ha = (1+€)/2 e =1/2

> Each D; is Bernoulli

> All of them are RC,, except one arm a is RC,

p
Remark.

This is not a single instance, but rather a set of k instances —
each a € [k] correspond to one problem instance P,

.

Formally, P, = {k bandits with D, = RC,, all other D; = RC}

A Note on Lower Bound Proof Approaches

> Generally, two approaches to show an algorithm can perform
bad on some instance

1. Show that an algorithm does bad on some instance

22

A Note on Lower Bound Proof Approaches

> Generally, two approaches to show an algorithm can perform
bad on some instance
1. Show that an algorithm does bad on some instance

2. Craft a set of instance, then randomly sample one for the algorithm
to solve; show that the algo’s expected performance is bad

23

A Note on Lower Bound Proof Approaches

> Generally, two approaches to show an algorithm can perform
bad on some instance
1. Show that an algorithm does bad on some instance

2. Craft a set of instance, then randomly sample one for the algorithm
to solve; show that the algo’s expected performance is bad

» (2)= (1) because if an algorithm perform bad in expectation, it must
have performed bad in at least one instance on the support

» A stronger version of (1) = (2):

if an algo does bad on a constant fraction of instances, then it has
constant probability to perform bad on a randomly sampled instance

» (1) suffices for a lower bound proof, but we use (2) often due to proof
convenience

> For our problem, we will use the set of instances {F, } ¢k

24

Lower Bounds for BAI

Theorem 0: Consider BAIl with T < i—’; on instances from set {F, },¢[x]

where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k /3]
P, instances such that

Pr(I"” # a|lP) = 1/2

P, = {k bandits with D, = RC,, all other D; = RC,}

25

Lower Bounds for BAI

Theorem 0: Consider BAIl with T < i—’; on instances from set {F, },¢[x]

where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k /3]
P, instances such that
Pr(I"” # a|lP) = 1/2

Corollary: Consider any BAI algorithm (possibly randomized) running on
. . . k
a uniformly randomly sampled instance from set {F, },¢ With T < Z—Z

Then Pr(IT #i*) > %where probability is over random choice of instance
P,, randomness of rewards and the algorithm.

> For deterministic algo, we have Pr(I” # a|P,) > 1/2 for at least 1/3 of
instances in {F, }qer) = Pr(I” #i*) = %x% = %on a sampled instance

» Any randomized algorithm is a distribution over deterministic algorithm

= Pr(IT #i*) > % by taking expectation over algo’ randomness

26

Next: Proof of Theorem 0 in 3 Steps

27

Step |: Converting the question to an instance testing
problem by introducing a benchmark scenario

Introduce instance P,, where all k arms are independent RC, (i.e.,
non-biased coins)
> Intuitions for remaining proofs

- We say an arm j € [k] is “neglected” by the algorithm if (1) it was not
played too often; (2) it has low probability to be the final output IT

« Will show under any deterministic algorithm to P,, a constant
fraction of arms are neglected

because not all arms can be played a lot, simply by counting

28

Step |: Converting the question to an instance testing
problem by introducing a benchmark scenario

Introduce instance P,, where all k arms are independent RC, (i.e.,
non-biased coins)

> Intuitions for remaining proofs

- We say an arm j € [k] is “neglected” by the algorithm if (1) it was not
played too often; (2) it has low probability to be the final output IT

« Will show under any deterministic algorithm to P,, a constant
fraction of arms are neglected
because not all arms can be played a lot, simply by counting

* Now consider any neglected arm under the same algorithm in P;

KL(P;, Py) is likely small since they only slightly differ on arm j,
Pinsker’s Inequality told us Pr(IT # j|P;) — Pr(IT # j|Py) must be small

Tricky part is to figure out how small this could tightly be!

29

Step 2: Characterizing “neglected arms” under any
deterministic algorithm on benchmark instance P,

Lemma 1: For any deterministic algorithm on P, there is a subset | c [k]
of arms such that

D) Jlzk/3
2) Foranyj €], E(N|Py) < %

3) Foranyj €], Pr(IT =j| Py) <

K| w

Recall: IT is the (random) arm pulled at last round T
N/ is the number of times arm j is pulled until round T

»>That is, /] contains all arms that are “neglected” in the sense of
property 2) and 3)

> Property 1) says that J has size at least k/3

30

Step 2: Characterizing “neglected arms” under any
deterministic algorithm on benchmark instance P,

Lemma 1: For any deterministic algorithm on P, there is a subset | c [k]
of arms such that

D) Jlzk/3
2) Foranyj €], E(N|Py) < %

3) Foranyj €], Pr(IT =j| Py) <

K| w

Intuition of the proof

> Follows from counting argument:
- At least 2k /3 arms satisfy property 2) since Z]T-zl NjT = T is always true
- At least 2k/3 arms satisfy property 3) since Y.7_, Pr(/f =j) =1

Formal proof left to HW1!

&

Step 2: Characterizing “neglected arms” under any
deterministic algorithm on benchmark instance P,

Lemma 1: For any deterministic algorithm on P, there is a subset | c [k]
of arms such that

1)]l =k/3
24T 7
2) Foranyj €], Pr(NjT < T| po) =

3) Foranyj €], Pr(IT =j| Py) <

K| w

Corollary: Property 2) above implies Pr (NjT < MTT| PO) >

0|

Proof. 24T E(NT|P By Markov’s inequalit
PI‘(NJ-T>_|P0)S (! | 0) Y [E‘?(N) Y
k 24T [k Pr(N > x) < —=
X
<1/8 By plugging in property 2)

This implies the corollary 32

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

The intuitive idea is straightforward
— Want to show KL divergence KL(P,, P;) is upper bounded
— Pinsker’s Inequality then implies if j is neglected under P,, it will be
under P; as well
Technical argument needs careful treatment
. . C
— Simple argument yields T < =
— To get the stronger T < Z—’; bound, we need to carefully define the
(random) events that determine a BAI algorithm’s behavior

33

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» A deterministic BAI algorithm maps any observed reward
sequence thus far to the next to-be-pulled arm

Alg: {0,1}¢ - [k]

» Such an Alg can be viewed as an adaptive way to open exactly T
cells of a random reward table

Arms

34

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» A deterministic BAI algorithm maps any observed reward
sequence thus far to the next to-be-pulled arm

Alg: {0,1}¢ - [k]

» Such an Alg can be viewed as an adaptive way to open exactly T
cells of a random reward table

» N}
1 0
2 1 0
Arms
J 0 1 1

35

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

> We only care about event Pr(IT =)

» Randomness purely comes from this random reward table

« Since Alg is deterministic — it maps a sequence of T rewards to a
deterministic choice of IT

» N}
1 0
2 1 0
Arms
J 0 1 1

36

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

> We only care about event Pr(IT =)

» Randomness purely comes from this random reward table

« Since Alg is deterministic — it maps a sequence of T rewards to a
deterministic choice of IT

» These T rewards can be from different rows/arms

» N}
1 0
2 1 0
Arms
J 0 1 1

S

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Bad news: generally, every reward cell below can possibly affect
the algorithm

« We particularly do not like that all T cells in j’s row can affect Alg

T
N} |
1 0
2 1 0
Arms
J 0 1 1

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Bad news: generally, every reward cell below can possibly affect
the algorithm

« We particularly do not like that all T cells in j’s row can affect Alg
= too much randomness that makes KL(P,, P;) too large
= a non-tight bound c¢/e?

T
N} |
1 0
2 1 0
Arms
J 0 1 1

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Key idea: only consider first m = min{MTT, T} cells in j'th row, though
allow other rows’ all random rewards (since they are equal under P, P;)

From Lemma 1, these are precisely

F | '
ormally, consider the condition of “neglected arms”

Pr(I* =j AND N/ <m)

3
«—3

> N} /

Arms

40

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Key idea: only consider first m = min{MTT, T} cells in j'th row, though
allow other rows’ all random rewards (since they are equal under P, P;)

From Lemma 1, these are precisely

F | '
ormally, consider the condition of “neglected arms”

Pr(I* = j) # Pr(I* =j AND N/ <m)

3
«—3

> N} /

Arms

41

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Key idea: only consider first m = min{MTT, T} cells in j'th row, though
allow other rows’ all random rewards (since they are equal under P, P;)

Formally, consider

Pr(It =j) = Pr(d* =j AND N/ <m) + Pr(I*=j AND N/ >Tm)

. N} m |

ot 1 [

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

Both events depend only on first m rewards of row j

Event 4, Event 4,
A

(|
< Pr(I* =j AND N/ <m) + Pr(Nj >m)
Pr(It =j) = Pr(d* =j AND N/ <m) + Pr(I*=j AND N/ >m)

. N! ’"/”
1 0 /
2 1 0 /

ot 1 [

43

. . T = .
Step 3: Upper b.oundlng Pr(/° = j) under instance P; for any
neglected arm j
» Letp; =RCyfort =1,2,..,mand p; =RCyfori #jandt=1,2,..,T
» Letq; =RC.fort =1,2,..,mand q; =RCyfori#jand t =1,2,..,T
> Both event 4,, 4, are in support of p = Il re(r1p; - Niepmp; and a

similarly defined ¢ Event 4, Event 4,
\

(|
< Pr(I* =j AND N/ <m) + Pr(Nj >m)
Pr(It =j) = Pr(d* =j AND N/ <m) + Pr(I*=j AND N/ >m)

. N! ’"/”
1 0 /
2 1 0 /

ot 1 [

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Letp; =RCyfort =1,2,..,mand p; =RCyfori #jandt=1,2,..,T
» Letq; =RC.fort =1,2,..,mand q; =RCyfori#jand t =1,2,..,T
> Both event Ay, A, are in support of p = I, rerryp; - Heepmp; and a

J
similarly defined ¢ Event 4, Event 4,
\

Pr(It =j) < Pr(I{t =j AND N]-T < m\) + Pr(NjT > m)
By chain rule
KL(P, @) = Zisjcerr KLL a1) + Zpepm KL}, 45
= Qixjce[r] KL(RCo, RCy) + Xtem) KL(RCo, RC,)

= m KL(RCy, RC,)

24T
< TEZ Since m = min{%,T}

1

Theorem 0 assumed T < Z—f for a small constant c = KL(p,q) < >

45

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Letp; =RCyfort =1,2,..,mand p; =RCyfori #jandt=1,2,..,T
» Letq; =RC.fort =1,2,..,mand q; =RCyfori#jand t =1,2,..,T
> Both event Ay, A, are in support of p = I, rerryp; - Heepmp; and a

J
similarly defined ¢ Event 4, Event 4,
\

(|
Pr(It = j) < Pr(I* =j AND N/ <m) + Pr(N} > m)

Theorem 0 assumed T < Z—f for a small constant c = KL(p,q) < 31—2

1
= | Pr(A|Py) — Pr(A|P,) | < VKL(p,q)/2 < s

46

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

» Letp; =RCyfort =1,2,..,mand p; =RCyfori #jandt=1,2,..,T
» Letq; =RC.fort =1,2,..,mand q; =RCyfori#jand t =1,2,..,T
> Both event Ay, A, are in support of p = I, rerryp; - Heepmp; and a

J
similarly defined ¢ Event 4, Event 4,
\

[\
Pr(It = j) < Pr(I* =j AND N/ <m) + Pr(N} > m)

Theorem 0 assumed T < Z—f for a small constant c = KL(p,q) < 31—2

1
= | Pr(A|Py) — Pr(A|P,) | < VKL(p,q)/2 <

8
1 1
Pr(A;|P;) < Pr(4;11Py) + s Pr(A,|P;) < Pr(4;|Py) + s
3 1 1 1
< —4+— < —4—
_k+8 (by lemma 1) _8+8 (by lemma 1)
1 1
< =7
4

By considering
instances with large k

47

Step 3: Upper bounding Pr(I" = j) under instance P; for any
neglected arm j

> Letpt =RC,fort=1,2,..,mandp; = RCyfori#jandt=1,2,..,T
J L

> Letgt =RC.fort =1,2,..,mand gt =RCyfori#jandt=1,2,..,T
J [

> Both event 4,, 4, are in support of p = Il re(r1p; - Niepmp; and a
similarly defined q Event 4, Event A,
| : | " 1

Pr(It =j) < Pr(I'*=j AND NjT <m) + Pr(NjT >m) < 5 on instance P;

Theorem 0 assumed T < Z—f for a small constant c = KL(p,q) < 31—2

1
= | Pr(A|Py) — Pr(A|P,) | < VKL(p,q)/2 <

8
1 1
Pr(A;|P;) < Pr(4;11Py) + s Pr(A,|P;) < Pr(4;|Py) + s
3 1 1 1
< —4+— < —4—
_k+8 (by lemma 1) _8+8 (by lemma 1)
1 1
< =7
4

By considering
instances with large k

48

To Summarize

We proved

Theorem 0: Consider BAIl with T < i—’; on instances from set {F, } ¢k

where ¢ is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k /3]

P, instances such that
Pr(IT # a|lP) = 1/2

Notably, this theorem does not hold for randomized algorithm since the
[k /3] P, instances may be different under different algorithm randomness

[
® Any deterministic algorithm
® Py ¢ “fails” at a constant fraction
® ® of constructed instances

49

To Summarize

We proved

Theorem 0: Consider BAIl with T < i—’; on instances from set {F, } ¢k

where ¢ is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k /3]

P, instances such that
Pr(IT # a|lP) = 1/2

Notably, this theorem does not hold for randomized algorithm since the
[k /3] P, instances may be different under different algorithm randomness

Randomly sample an instance

removes this limitation L _
Any deterministic algorithm
O “fails” at a constant fraction

of constructed instances

50

To Summarize

We proved

Theorem 0: Consider BAI with T < i—’; on instances from set {F, } ¢k
where ¢ is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least [k /3]

P, instances such that
Pr(IT # a|lP) = 1/2

Notably, this theorem does not hold for randomized algorithm since the
[k /3] P, instances may be different under different algorithm randomness

Corollary: Consider any BAI algorithm (possibly randomized) running on
. . . k
a uniformly randomly sampled instance from set {F, },¢ With T < Z—Z

Then Pr(IT = i*) > %where probability is over random choice of instance
P,, randomness of rewards and the algorithm.

4

Outline

» Technical Preparations
» Detour: Best-Arm Identification (BAl) Lower Bounds

» MAB Regret Lower Bounds
* |nstance-Independent Lower Bound

* |Instance-Dependent Lower Bounds

92

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon T and number of arms k.

For any bandit algorithm, running on a uniformly randomly sampled instance
from {P,}qe[k) With € = \/ck /T for a sufficiently small constant c, we have
E(RT) = Q(VkT)

where expectation is over choice of instance P,, randomness in rewards and Algo.

Proof.
> Note that T = ck/e? by our choice of €

» Previous corollary says any algorithm running on the stated random
instance satisfies Pr(I¢ = i*) > é forany t < ck/e?(=T)

» This means we suffer expected regret > %x g at each round t < T since
in the constructed instance, any sub-optimal arm has A = ¢/2
» In total, we have

E(RT) = — xT = Q(VkT)
12 53

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon T and number of arms k.

For any bandit algorithm, running on a uniformly randomly sampled instance
from {P,}qe[k) With € = \/ck /T for a sufficiently small constant c, we have
E(RT) = Q(VkT)

where expectation is over choice of instance P,, randomness in rewards and Algo.

Remarks.
» This is called “worst-case lower bound”
* You designed an algorithm;

« Someone tries to “stress test” your algorithm by trying to feeding in
the most challenging instance

 The bound captures the best you can do under such challenge

> Also known as “minimax lower bound”

min max Regret(Algo]|lns)
Algorithm Instance 5

Outline

» Technical Preparations
» Detour: Best-Arm Identification (BAl) Lower Bounds

» MAB Regret Lower Bounds
* |Instance-Independent Lower Bound

* |nstance-Dependent Lower Bounds

That is, remove that “max” in “minimax lower
bound”, and derive a bound for every instance

95

Instance-Dependent Regret Lower Bound

Rough format of the statement

“For any MAB problem instance P and time horizon T, no algorithm
can achieve regret E(R") = o(Timep 1)’

»However, this claim is clearly not true > why?

- Consider a trivial algorithm Alg, which always pulls arm a
» One of {Algg}qeqk) has 0 regret

> To have a meaningful result, we need to rule out such “pure luck”
algorithms that fail miserably in general, but do well occasionally

56

Instance-Dependent Regret Lower Bound

Theorem 2. Consider any MAB algorithm that satisfies
E(R") < 0(Cpq T) for any a > 0 and any instance P.

Then for any problem instance P, there exists a time T, such that for any

T = T,, we have

ER™) 2 w'(1 = i) Bimir 3

> This is the restriction on the algorithms that we consider

- That is, these are reasonable algorithms that attempted to solve all
instances

> This bound shows that UCB’s gap-dependent regret bound is tight
order-wise

57

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

