
DATA 37200: Learning, Decisions, and Limits
(Winter 2025)

Lower Bounds for Stochastic MAB

Instructor: Haifeng Xu

2

Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline

3

Lower Bounds: What and Why?

We look to derive results of form like
 Regret ≥ 𝐶 𝐾𝑇 for some constant 𝐶

or equivalently, Regret = Ω(𝐾𝑇)

This helps to understand what we cannot achieve – i.e., our limits

4

Lower Bounds: What and Why?

We look to derive results of form like
 Regret ≥ 𝐶 𝐾𝑇 for some constant 𝐶

or equivalently, Regret = Ω(𝐾𝑇)

Ø If you have learned computational hardness (e.g., NP-hardness),
that shares a similar spirit but very different flavor

Ø Computational lower bounds are mostly conditional
• E.g., 3SAT takes at least exponential time to solve, if P ≠ NP
• P ≠ NP is an assumption

Ø The bound we will show for MAB is unconditional
• i.e., they are facts that do not require any assumption
• Proofs here will mostly uses information theory

This helps to understand what we cannot achieve – i.e., our limits

5

KL-Divergence

Remarks

ØSimilarly defined for continuous domain, though not needed for now

Ø It is not symmetric: 𝐾𝐿 𝑝, 𝑞 ≠ 𝐾𝐿 𝑞, 𝑝

Ø Closely related to entropy; also named “relative entropy”

ØWidely used in practice for measuring distribution distance (e.g., it is the
default regularizer for fine-tuning LLMs)

Definition (KL-Divergence). For any two distributions 𝑝, 𝑞 supported on
discrete set 𝑋, their Kullback–Leibler (KL) divergence is defined as

𝐾𝐿 𝑝, 𝑞 =)
!∈#

𝑝 𝑥 ln
𝑝(𝑥)
𝑞(𝑥)

	= 𝔼!∼% ln
𝑝(𝑥)
𝑞(𝑥)

A useful quantity that measures “distance” between two distributions

6

KL-Divergence: An Example

Ø𝑅𝐶! is a Bernoulli random variable with 𝑝 = (1 + 𝜖)/2

ØCalculating KL-divergence

Definition. (Biased Random Coins). For any 𝜖 ∈ [− &
'
, &
'
], let 𝑅𝐶(be the

binary random coin with 𝜖/2 bias -- i.e., it takes value 1/head with prob
&)(
'

, and 0/tail otherwise.

𝐾𝐿 𝑅𝐶(, 𝑅𝐶* =
1 + 𝜖
2

ln
(1 + 𝜖)/2
1/2

+
1 − 𝜖
2

ln
(1 − 𝜖)/2
1/2

Claim: 𝐾𝐿 𝑅𝐶(, 𝑅𝐶* ≤ 2𝜖' and 𝐾𝐿 𝑅𝐶*, 𝑅𝐶(≤ 𝜖' for any 𝜖 ∈ (0,½)

Remark: this 𝜖' term turns out to be the reason of the Ω(𝑇
!
") lower bound

Claim’s proof deferred to HW.

7

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties
a. Gibb’s Inequality: 𝐾𝐿 𝑝, 𝑞 ≥ 0, with equality if and only if 𝑝 = 𝑞
 b. Chain rule for product distributions: For 𝑖 = 1,⋯ , 𝑛, let 𝑝+ , 𝑞+ be

two distributions supported on 𝑋+. 𝑝 = 𝑝&×𝑝'⋯×𝑝,, 𝑞 = 𝑞&×𝑞'⋯×𝑞,
be their product distributions. Then 𝐾𝐿(𝑝, 𝑞) 	= 	∑+-&, 𝐾𝐿(𝑝+ , 𝑞+) .	

c. Pinsker’s inequality: For any event 𝐴 ⊆ 𝑋, we have
2 𝑝 𝐴 − 𝑞 𝐴 ' ≤ 𝐾𝐿(𝑝, 𝑞)

Remarks.
ØThe probability difference of any event is upper bounded by 𝑂(𝐾𝐿(𝑝, 𝑞))

Ø Illustrates why it captures “divergence” between two distributions
ØPinsker’s inequality implies 𝐾𝐿 𝑅𝐶*, 𝑅𝐶(≥ 𝜖'/2 (compare to previous

claim 𝐾𝐿 𝑅𝐶*, 𝑅𝐶(≤ 𝜖')

8

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties
a. Gibb’s Inequality: 𝐾𝐿 𝑝, 𝑞 ≥ 0, with equality if and only if 𝑝 = 𝑞
 b. Chain rule for product distributions: For 𝑖 = 1,⋯ , 𝑛, let 𝑝+ , 𝑞+ be

two distributions supported on 𝑋+. 𝑝 = 𝑝&×𝑝'⋯×𝑝,, 𝑞 = 𝑞&×𝑞'⋯×𝑞,
be their product distributions. Then 𝐾𝐿(𝑝, 𝑞) 	= 	∑+-&, 𝐾𝐿(𝑝+ , 𝑞+) .	

c. Pinsker’s inequality: For any event 𝐴 ⊆ 𝑋, we have
2 𝑝 𝐴 − 𝑞 𝐴 ' ≤ 𝐾𝐿(𝑝, 𝑞)

Proofs deferred to HW1.

9

Exercise with KL & a Warm-up
Lower-Bound Problem

How many coin flips are needed to confidently tell it is fair
or not?

10

A Fair Coin or Not?

ØYou know a coin is either 𝑅𝐶" or 𝑅𝐶!
• 𝑅𝐶* is called a fair coin, and 𝑅𝐶(has 𝜖/2 bias

ØYou can flip the coin 𝑇 times

ØBased on your observations, you have a (deterministic) decision
rule to decide it is fair or biased:

 Rule: 0,1 # → {fair, biased}

11

A Fair Coin or Not?

ØYou know a coin is either 𝑅𝐶" or 𝑅𝐶!
• 𝑅𝐶* is called a fair coin, and 𝑅𝐶(has 𝜖/2 bias

ØYou can flip the coin 𝑇 times

ØBased on your observations, you have a (deterministic) decision
rule to decide it is fair or biased:

 Rule: 0,1 # → {fair, biased}

Question: how large your 𝑇 needs to at least be for you to
be correct with high prob in the following sense?
 Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = fair	 𝑅𝐶" ≥ 3/4	 (1)
 Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = biased	 𝑅𝐶! ≥ 3/4 (2)

12

A Fair Coin or Not?

Proof
ØThe decision rule is deterministic, so there is a subset 𝐴* ⊆ 0,1 . of

events such that
 Rule(𝑥) = fair for any 𝑥 ∈ 𝐴*
 Rule(𝑥) = biased for any 𝑥 ∉ 𝐴*
Ø Following accuracy requirement implies 𝐴* happens with probability ≥
3/4 under 𝑅𝐶*, but happens with prob ≤ 1/4 under 𝑅𝐶(

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.

Question: how large your 𝑇 needs to at least be for you to
be correct with high prob in the following sense?
 Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = fair	 𝑅𝐶" ≥ 3/4	 (1)
 Pr Rule 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = biased	 𝑅𝐶! ≥ 3/4 (2)

13

A Fair Coin or Not?

Proof
ØThe decision rule is deterministic, so there is a subset 𝐴* ⊆ 0,1 . of

events such that
 Rule(𝑥) = fair for any 𝑥 ∈ 𝐴*
 Rule(𝑥) = biased for any 𝑥 ∉ 𝐴*
Ø Following accuracy requirement implies 𝐴* happens with probability ≥
3/4 under 𝑅𝐶*, but happens with prob ≤ 1/4 under 𝑅𝐶(

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.

Next we employ properties of KL to show 𝑇 has to
be large to achieve the above inequality

That is, Pr 𝐴* 𝑅𝐶* − Pr(𝐴*|𝑅𝐶() ≥ 3/4 − 1/4 = 1/2

14

A Fair Coin or Not?

Proof (con’d)

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.

ØLet 𝑝+ = 𝑅𝐶*	, 𝑞+ = 𝑅𝐶(; consider product distributions 𝑝 = Π+-&. 𝑝+, 𝑞 =
Π+-&. 𝑞+
Ø𝑝, 𝑞 are measures over 0,1 . ⊇ 𝐴*, so Pinsker’s inequality told us

𝐾𝐿 𝑞, 𝑞 = 	∑+-&. 𝐾𝐿(𝑝+ , 𝑞+) ≤ 𝑇𝜖'

𝐾𝐿 𝑝, 𝑞 ≥ 2 Pr 𝐴* 𝑅𝐶* − Pr 𝐴* 𝑅𝐶('

That is, Pr 𝐴* 𝑅𝐶* − Pr(𝐴*|𝑅𝐶() ≥ 3/4 − 1/4 = 1/2

ØEmploy chain rule to upper bound KL:

ØCombing these two inequalities we have

𝑇 ≥
𝐾𝐿 𝑝, 𝑞

𝜖'
≥

1
2𝜖'

≥ 1/2

15

A Fair Coin or Not?

Proof (con’d)

Claim: Fix a decision rule that satisfies (1) and (2). Then 𝑇 ≥ &
'("

.

ØLet 𝑝+ = 𝑅𝐶*	, 𝑞+ = 𝑅𝐶(; consider product distributions 𝑝 = Π+-&. 𝑝+, 𝑞 =
Π+-&. 𝑞+
Ø𝑝, 𝑞 are measures over 0,1 . ⊇ 𝐴*, so Pinsker’s inequality told us

𝐾𝐿 𝑞, 𝑞 = 	∑+-&. 𝐾𝐿(𝑝+ , 𝑞+) ≤ 𝑇𝜖'

𝐾𝐿 𝑝, 𝑞 ≥ 2 Pr 𝐴* 𝑅𝐶* − Pr 𝐴* 𝑅𝐶('

ØEmploy chain rule to upper bound KL:

ØCombing these two inequalities we have

𝑇 ≥
𝐾𝐿 𝑝, 𝑞

𝜖'
≥

1
2𝜖'

Remarkably, the proof applies to any decision rule;
fundamentally, it is because Pinsker’s inequality holds for any 𝐴"

≥ 1/2

That is, Pr 𝐴* 𝑅𝐶* − Pr(𝐴*|𝑅𝐶() ≥ 3/4 − 1/4 = 1/2

16

Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline

17

A Variant of MAB: Best-Arm Identification (BAI)

ØSame setup as MAB, but task is to identify best arm 𝑖∗(= argmax
+∈[1]

𝜇+)

ØSame strategy process of pulling arms 𝑖&, 𝑖', … , 𝑖3, … , 𝑖.

ØGiven 𝑇 rounds of opportunities, performance is measured by probability
of success Pr(𝐼. = 𝑖∗)

. . .
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷'
𝜇& 𝜇4 𝜇1

. . .
: 	𝑟1 ∼ 𝐷1

18

A Variant of MAB: Best-Arm Identification (BAI)

ØSame setup as MAB, but task is to identify best arm 𝑖∗(= argmax
+∈[1]

𝜇+)

ØSame strategy process of pulling arms 𝑖&, 𝑖', … , 𝑖3, … , 𝑖.

ØGiven 𝑇 rounds of opportunities, performance is measured by probability
of success Pr(𝐼. = 𝑖∗)

. . .
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷'
𝜇& 𝜇4 𝜇1

. . .
: 	𝑟1 ∼ 𝐷1

Ø Clearly, if 𝑇 is very large, we can easily succeed with high prob.

Ø Goal Next: understand how large 𝑇 needs to be in order to guarantee
reasonable success on any problem instance

By proving a statement of form “if 𝑇 ≤? ?, then for any algorithm will have at
least constant probability of failing to find optimal arm on some instance”

19

Imaging the Difficult Instances…

ØAll arms have equal mean, except one of them that is slightly higher
• Difficult since every sub-optimal arm is equally confusing

ØHopefully, each arm has large variance so rewards are random enough
to “hide” the true mean
• Interestingly, Bernoulli distributions (i.e., biased coins) turn out to

already be sufficiently hard

. . .
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷'
𝜇& 𝜇4 𝜇1

. . .
: 	𝑟1 ∼ 𝐷1

What instance would be difficult for BAI?

20

Construction of Lower Bound Instances

. . .
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷'
𝜇& 𝜇4 𝜇1

ØEach 𝐷+ is Bernoulli

ØAll of them are 𝑅𝐶*, except one arm 𝑎 is 𝑅𝐶(

. . .
: 	𝑟1 ∼ 𝐷1

= 1/2 = 1/2= (1 + 𝜖)/2

21

Construction of Lower Bound Instances

. . .
1 𝑎 𝑘: 	𝑟&∼ 𝐷& : 	𝑟4 ∼ 𝐷'
𝜇& 𝜇4 𝜇1

ØEach 𝐷+ is Bernoulli

ØAll of them are 𝑅𝐶*, except one arm 𝑎 is 𝑅𝐶(

. . .
: 	𝑟1 ∼ 𝐷1

= 1/2 = 1/2= (1 + 𝜖)/2

Remark.

This is not a single instance, but rather a set of 𝑘 instances –
each 𝑎 ∈ [𝑘] correspond to one problem instance 𝑃4

Formally, 𝑃4 = {𝑘	bandits	with	𝐷4 = 𝑅𝐶(, all	other	𝐷+ = 𝑅𝐶*}

22

A Note on Lower Bound Proof Approaches

Ø Generally, two approaches to show an algorithm can perform
bad on some instance
1. Show that an algorithm does bad on some instance

23

A Note on Lower Bound Proof Approaches

Ø Generally, two approaches to show an algorithm can perform
bad on some instance
1. Show that an algorithm does bad on some instance
2. Craft a set of instance, then randomly sample one for the algorithm

to solve; show that the algo’s expected performance is bad

24

A Note on Lower Bound Proof Approaches

Ø Generally, two approaches to show an algorithm can perform
bad on some instance
1. Show that an algorithm does bad on some instance
2. Craft a set of instance, then randomly sample one for the algorithm

to solve; show that the algo’s expected performance is bad

Ø (2)⇒ (1) because if an algorithm perform bad in expectation, it must
have performed bad in at least one instance on the support

Ø A stronger version of (1) ⇒ (2):
if an algo does bad on a constant fraction of instances, then it has
constant probability to perform bad on a randomly sampled instance

Ø (1) suffices for a lower bound proof, but we use (2) often due to proof
convenience

Ø For our problem, we will use the set of instances 𝑃4 4∈[1]

25

Lower Bounds for BAI

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1],
where 𝑐	 is a small enough absolute constant.
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉
𝑃4 instances such that

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

𝑃4 = {𝑘	bandits	with	𝐷4 = 𝑅𝐶(, all	other	𝐷+ = 𝑅𝐶*}

26

Lower Bounds for BAI

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1],
where 𝑐	 is a small enough absolute constant.
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉
𝑃4 instances such that

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

Corollary: Consider any BAI algorithm (possibly randomized) running on
a uniformly randomly sampled instance from set 𝑃4 4∈[1] with 𝑇 ≤ 51

("
.

Then Pr(𝐼. ≠ 𝑖∗) ≥ &
6
 where probability is over random choice of instance

𝑃4, randomness of rewards and the algorithm.

Ø For deterministic algo, we have Pr(𝐼. ≠ 𝑎|𝑃4) ≥ 1/2 for at least 1/3 of
instances in 𝑃4 4∈[1] ⇒ Pr(𝐼. ≠ 𝑖∗) ≥ &

'
× &
7
= &

6
 on a sampled instance

Ø Any randomized algorithm is a distribution over deterministic algorithm

⇒ Pr(𝐼. ≠ 𝑖∗) ≥ &
6
 by taking expectation over algo’ randomness

27

Next: Proof of Theorem 0 in 3 Steps

28

Step 1: Converting the question to an instance testing
problem by introducing a benchmark scenario

Introduce instance 𝑃", where all 𝑘 arms are independent 𝑅𝐶" (i.e.,
non-biased coins)

ØIntuitions for remaining proofs
• We say an arm 𝑗 ∈ [𝑘] is “neglected” by the algorithm if (1) it was not

played too often; (2) it has low probability to be the final output 𝐼.

because not all arms can be played a lot, simply by counting

• Will show under any deterministic algorithm to 𝑃*, a constant
fraction of arms are neglected

29

Step 1: Converting the question to an instance testing
problem by introducing a benchmark scenario

Introduce instance 𝑃", where all 𝑘 arms are independent 𝑅𝐶" (i.e.,
non-biased coins)

ØIntuitions for remaining proofs
• We say an arm 𝑗 ∈ [𝑘] is “neglected” by the algorithm if (1) it was not

played too often; (2) it has low probability to be the final output 𝐼.

because not all arms can be played a lot, simply by counting
• Now consider any neglected arm under the same algorithm in 𝑃8

𝐾𝐿(𝑃8 , 𝑃*) is likely small since they only slightly differ on arm 𝑗,
Pinsker’s Inequality told us Pr 𝐼. ≠ 𝑗 𝑃8 − Pr(𝐼. ≠ 𝑗|𝑃*) must be small

Tricky part is to figure out how small this could tightly be!

• Will show under any deterministic algorithm to 𝑃*, a constant
fraction of arms are neglected

30

Step 2: Characterizing “neglected arms” under any
deterministic algorithm on benchmark instance 𝑃q

ØThat is, 𝐽 contains all arms that are “neglected” in the sense of
property 2) and 3)

ØProperty 1) says that 𝐽 has size at least 𝑘/3

Lemma 1: For any deterministic algorithm on 𝑃*, there is a subset 𝐽 ⊂ [𝑘]
of arms such that
1) 𝐽 ≥ 𝑘/3

2) For any 𝑗 ∈ 𝐽, 𝔼 𝑁8.|𝑃* ≤ 7.
1

3) For any 𝑗 ∈ 𝐽, Pr 𝐼. = 𝑗|	𝑃* ≤ 7
1

Recall: 𝐼. is the (random) arm pulled at last round 𝑇
 𝑁8. is the number of times arm 𝑗 is pulled until round 𝑇

31

Step 2: Characterizing “neglected arms” under any
deterministic algorithm on benchmark instance 𝑃q

Intuition of the proof

ØFollows from counting argument:
• At least 2𝑘/3 arms satisfy property 2) since ∑8-&. 𝑁8. = 𝑇 is always true
• At least 2𝑘/3 arms satisfy property 3) since ∑8-&. Pr 𝐼8. = 𝑗 = 1

Lemma 1: For any deterministic algorithm on 𝑃*, there is a subset 𝐽 ⊂ [𝑘]
of arms such that
1) 𝐽 ≥ 𝑘/3

2) For any 𝑗 ∈ 𝐽, 𝔼 𝑁8.|𝑃* ≤ 7.
1

3) For any 𝑗 ∈ 𝐽, Pr 𝐼. = 𝑗|	𝑃* ≤ 7
1

Formal proof left to HW1!

32

Step 2: Characterizing “neglected arms” under any
deterministic algorithm on benchmark instance 𝑃q

Lemma 1: For any deterministic algorithm on 𝑃*, there is a subset 𝐽 ⊂ [𝑘]
of arms such that
1) 𝐽 ≥ 𝑘/3

2) For any 𝑗 ∈ 𝐽, 𝔼 𝑁8.|𝑃* ≤ 7.
1

3) For any 𝑗 ∈ 𝐽, Pr 𝐼. = 𝑗|	𝑃* ≤ 7
1

Corollary: Property 2) above implies Pr 𝑁8. ≤
'9.
1
|	𝑃* ≥ :

;

Proof. By Markov’s inequality

Pr 𝑁 > 𝑥 ≤
𝔼 𝑁
𝑥

≤ 1/8 By plugging in property 2)

Pr 𝑁8. >
24𝑇
𝑘

|	𝑃* ≤
𝔼 𝑁8.|𝑃*
24𝑇/𝑘

This implies the corollary

Pr 𝑁8. ≤
'9.
1
|	𝑃* ≥ :

;

33

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

The intuitive idea is straightforward
– Want to show 𝐾𝐿 divergence 𝐾𝐿(𝑃*, 𝑃8) is upper bounded
– Pinsker’s Inequality then implies if 𝑗 is neglected under 𝑃*, it will be
under 𝑃8 as well

Technical argument needs careful treatment

– Simple argument yields 𝑇 ≤ 5
("

– To get the stronger 𝑇 ≤ 51
("

 bound, we need to carefully define the
(random) events that determine a BAI algorithm’s behavior

34

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø A deterministic BAI algorithm maps any observed reward
sequence thus far to the next to-be-pulled arm

Alg: 0,1 $ → [𝑘]
Ø Such an Alg can be viewed as an adaptive way to open exactly 𝑇

cells of a random reward table

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

35

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø A deterministic BAI algorithm maps any observed reward
sequence thus far to the next to-be-pulled arm

Alg: 0,1 $ → [𝑘]
Ø Such an Alg can be viewed as an adaptive way to open exactly 𝑇

cells of a random reward table

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

36

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø We only care about event Pr(𝐼# = 𝑗)
Ø Randomness purely comes from this random reward table

• Since Alg is deterministic – it maps a sequence of 𝑇 rewards to a
deterministic choice of 𝐼.

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

37

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø We only care about event Pr(𝐼# = 𝑗)
Ø Randomness purely comes from this random reward table

• Since Alg is deterministic – it maps a sequence of 𝑇 rewards to a
deterministic choice of 𝐼.

• These 𝑇 rewards can be from different rows/arms

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

38

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø Bad news: generally, every reward cell below can possibly affect
the algorithm
• We particularly do not like that all 𝑇 cells in 𝑗’s row can affect Alg

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

𝑇

39

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø Bad news: generally, every reward cell below can possibly affect
the algorithm
• We particularly do not like that all 𝑇 cells in 𝑗’s row can affect Alg
 ⇒ too much randomness that makes 𝐾𝐿(𝑃*, 𝑃8) too large

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

𝑇

⇒ a non-tight bound 𝑐/𝜖'

40

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø Key idea: only consider first 𝑚 = min{'9.
1
, 𝑇} cells in 𝑗’th row, though

allow other rows’ all random rewards (since they are equal under 𝑃*, 𝑃8)

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

𝑇
𝑚

Formally, consider From Lemma 1, these are precisely
the condition of “neglected arms”

Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

41

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø Key idea: only consider first 𝑚 = min{'9.
1
, 𝑇} cells in 𝑗’th row, though

allow other rows’ all random rewards (since they are equal under 𝑃*, 𝑃8)

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

Arms

𝑁+
3

𝑇
𝑚

Formally, consider

Pr 𝐼3 = 𝑗 ≠ Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

From Lemma 1, these are precisely
the condition of “neglected arms”

42

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

Ø Key idea: only consider first 𝑚 = min{'9.
1
, 𝑇} cells in 𝑗’th row, though

allow other rows’ all random rewards (since they are equal under 𝑃*, 𝑃8)

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

𝑁+
3

𝑇
𝑚

Pr 𝐼3 = 𝑗 = +	Pr(𝐼3 = 𝑗	 AND	 𝑁8. > 𝑚)Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

Formally, consider

43

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Both events depend only on first 𝑚 rewards of row 𝑗

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

𝑁+
3 𝑚

Pr 𝐼3 = 𝑗 = +	Pr(𝐼3 = 𝑗	 AND	 𝑁8. > 𝑚)Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

44

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

1 0
2 1 0 …
…
𝑗 0 1 1 …
…
𝑘 0 1 …

𝑁+
3 𝑚

Pr 𝐼3 = 𝑗 = +	Pr(𝐼3 = 𝑗	 AND	 𝑁8. > 𝑚)Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚)

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Let 𝑞83 = 𝑅𝐶(for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83 and a

similarly defined 𝑞

45

By chain rule

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Let 𝑞83 = 𝑅𝐶(for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83 and a

similarly defined 𝑞

𝐾𝐿 𝑝, 𝑞 = ∑+<8,3∈[.]𝐾𝐿(𝑝+
3, 𝑞+

3) + ∑3∈[>]𝐾𝐿(𝑝8
3, 𝑞8

3)

= ∑+<8,3∈[.]𝐾𝐿(𝑅𝐶*, 𝑅𝐶*) + ∑3∈[>]𝐾𝐿(𝑅𝐶*, 𝑅𝐶()

= 𝑚	𝐾𝐿(𝑅𝐶*, 𝑅𝐶()

≤
24𝑇
𝑘

𝜖' Since 𝑚 = min{'9.
1
, 𝑇}

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

Pr 𝐼3 = 𝑗

46

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Let 𝑞83 = 𝑅𝐶(for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83 and a

similarly defined 𝑞

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

Pr 𝐼3 = 𝑗

⇒ | Pr 𝐴 𝑃* − Pr 𝐴 𝑃8 | ≤ 𝐾𝐿 𝑝, 𝑞 /2 ≤
1
8

47

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Let 𝑞83 = 𝑅𝐶(for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83 and a

similarly defined 𝑞

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

Pr 𝐼3 = 𝑗

⇒ | Pr 𝐴 𝑃* − Pr 𝐴 𝑃8 | ≤ 𝐾𝐿 𝑝, 𝑞 /2 ≤
1
8

Pr 𝐴& 𝑃8 ≤ Pr 𝐴& 𝑃* +
1
8

≤
3
𝑘
+
1
8

≤
1
4

By considering
instances with large 𝑘

Pr 𝐴' 𝑃8 ≤ Pr 𝐴' 𝑃* +
1
8

≤
1
8
+
1
8

(by lemma 1) (by lemma 1)

≤
1
4

48

Step 3: Upper bounding Pr(𝐼w = 𝑗) under instance 𝑃x for any
neglected arm 𝑗

≤ 	Pr(𝐼3 = 𝑗	 AND	 𝑁8. ≤ 𝑚) +	Pr(𝑁8. > 𝑚)

Event 𝐴& Event 𝐴'

Ø Let 𝑝83 = 𝑅𝐶* for 𝑡 = 1, 2, … ,𝑚 and 𝑝+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Let 𝑞83 = 𝑅𝐶(for 𝑡 = 1, 2, … ,𝑚 and 𝑞+3 = 𝑅𝐶* for 𝑖 ≠ 𝑗 and 𝑡 = 1, 2, … , 𝑇
Ø Both event 𝐴&, 𝐴' are in support of 𝑝 = Π+<8,3∈[.]p+3 ⋅ Π3∈ > 𝑝83 and a

similarly defined 𝑞

Pr 𝐼3 = 𝑗

⇒ | Pr 𝐴 𝑃* − Pr 𝐴 𝑃8 | ≤ 𝐾𝐿 𝑝, 𝑞 /2 ≤
1
8

Pr 𝐴& 𝑃8 ≤ Pr 𝐴& 𝑃* +
1
8

≤
3
𝑘
+
1
8

≤
1
4

By considering
instances with large 𝑘

Pr 𝐴' 𝑃8 ≤ Pr 𝐴' 𝑃* +
1
8

≤
1
8
+
1
8

(by lemma 1) (by lemma 1)

≤
1
4

≤
1
2

on instance 𝑃8

Theorem 0 assumed 𝑇 ≤ 51
("

 for a small constant 𝑐 ⇒ 𝐾𝐿 𝑝, 𝑞 ≤ &
7'

49

To Summarize

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1],
where 𝑐	 is a small enough absolute constant.
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉
𝑃4 instances such that

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

We proved

Notably, this theorem does not hold for randomized algorithm since the
⌈𝑘/3⌉ 𝑃4 instances may be different under different algorithm randomness

Any deterministic algorithm
“fails” at a constant fraction
of constructed instances

50

To Summarize

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1],
where 𝑐	 is a small enough absolute constant.
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉
𝑃4 instances such that

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

We proved

Notably, this theorem does not hold for randomized algorithm since the
⌈𝑘/3⌉ 𝑃4 instances may be different under different algorithm randomness

Any deterministic algorithm
“fails” at a constant fraction
of constructed instances

Randomly sample an instance
removes this limitation

51

To Summarize

Theorem 0: Consider BAI with 𝑇 ≤ 51
("

 on instances from set 𝑃4 4∈[1],
where 𝑐	 is a small enough absolute constant.
For any deterministic algorithm for this problem, there exists at least ⌈𝑘/3⌉
𝑃4 instances such that

Pr 𝐼. ≠ 𝑎 𝑃4 ≥ 1/2

Corollary: Consider any BAI algorithm (possibly randomized) running on
a uniformly randomly sampled instance from set 𝑃4 4∈[1] with 𝑇 ≤ 51

("
.

We proved

Then Pr(𝐼. ≠ 𝑖∗) ≥ &
6
 where probability is over random choice of instance

𝑃4, randomness of rewards and the algorithm.

Notably, this theorem does not hold for randomized algorithm since the
⌈𝑘/3⌉ 𝑃4 instances may be different under different algorithm randomness

52

Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline

53

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon 𝑇 and number of arms 𝑘.
For any bandit algorithm, running on a uniformly randomly sampled instance
from 𝑃4 4∈[1] with 𝜖 = 𝑐𝑘/𝑇 for a sufficiently small constant 𝑐, we have

Proof.
Ø Note that 𝑇 = 𝑐𝑘/𝜖' by our choice of 𝜖
Ø Previous corollary says any algorithm running on the stated random

instance satisfies Pr(𝐼3 ≠ 𝑖∗) ≥ &
6
 for any 𝑡 ≤ 𝑐𝑘/𝜖'(= 𝑇)

Ø This means we suffer expected regret ≥ &
6
× (
'
 at each round 𝑡 ≤ 𝑇 since

in the constructed instance, any sub-optimal arm has Δ = 𝜖/2
Ø In total, we have

𝔼 𝑅. ≥
𝜖
12
×𝑇 = Ω(𝑘𝑇)

𝔼 𝑅. ≥ Ω(𝑘𝑇)
where expectation is over choice of instance 𝑃!, randomness in rewards and Algo.

54

Regret Lower Bound for MAB

Remarks.
Ø This is called “worst-case lower bound”

• You designed an algorithm;
• Someone tries to “stress test” your algorithm by trying to feeding in

the most challenging instance
• The bound captures the best you can do under such challenge

Ø Also known as “minimax lower bound”
min

?@ABCDEFG	
max

IJKELJMN
	 𝑅𝑒𝑔𝑟𝑒𝑡(Algo|Ins)

Theorem 1: Fixed time horizon 𝑇 and number of arms 𝑘.
For any bandit algorithm, running on a uniformly randomly sampled instance
from 𝑃4 4∈[1] with 𝜖 = 𝑐𝑘/𝑇 for a sufficiently small constant 𝑐, we have

𝔼 𝑅. ≥ Ω(𝑘𝑇)
where expectation is over choice of instance 𝑃!, randomness in rewards and Algo.

55

Ø Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

ØMAB Regret Lower Bounds

• Instance-Independent Lower Bound

• Instance-Dependent Lower Bounds

Outline

That is, remove that “max” in “minimax lower
bound”, and derive a bound for every instance

56

Instance-Dependent Regret Lower Bound

ØHowever, this claim is clearly not true à why?
• Consider a trivial algorithm Alg4 which always pulls arm 𝑎
• One of Alg4 4∈[1] has 0 regret

ØTo have a meaningful result, we need to rule out such “pure luck”
algorithms that fail miserably in general, but do well occasionally

Rough format of the statement

“For any MAB problem instance 𝑃 and time horizon 𝑇, no algorithm
can achieve regret 𝔼 𝑅. = o(𝑇𝑖𝑚𝑒O,.)”

57

Instance-Dependent Regret Lower Bound

ØThis is the restriction on the algorithms that we consider
• That is, these are reasonable algorithms that attempted to solve all

instances

ØThis bound shows that UCB’s gap-dependent regret bound is tight
order-wise

Theorem 2. Consider any MAB algorithm that satisfies
 𝔼 𝑅. ≤ O(𝐶O,P	𝑇^𝛼) for any 𝛼 > 0 and any instance 𝑃.

Then for any problem instance 𝑃, there exists a time 𝑇* such that for any
𝑇 ≥ 𝑇*, we have
 𝔼 𝑅. ≥ 𝜇∗ 1 − 𝜇∗ ∑+<+∗

@J .
Q$

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

