DATA 37200: Learning, Decisions, and Limits (Winter 2025)

Lower Bounds for Stochastic MAB

Instructor: Haifeng Xu

▶ Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

≻MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

Lower Bounds: What and Why?

We look to derive results of form like

Regret $\geq C\sqrt{KT}$ for some constant C

or equivalently, Regret = $\Omega(\sqrt{KT})$

This helps to understand what we *cannot* achieve – i.e., our limits

Lower Bounds: What and Why?

We look to derive results of form like

Regret $\geq C\sqrt{KT}$ for some constant C

or equivalently, Regret = $\Omega(\sqrt{KT})$

This helps to understand what we *cannot* achieve – i.e., our limits

- \triangleright If you have learned computational hardness (e.g., NP-hardness), that shares a similar spirit but very different flavor
- Ø Computational lower bounds are mostly *conditional*
	- E.g., 3SAT takes at least exponential time to solve, *if* $P \neq NP$
	- $P \neq NP$ is an assumption
- Ø The bound we will show for MAB is *unconditional*
	- i.e., they are facts that do not require any assumption
	- Proofs here will mostly uses information theory

KL-Divergence

A useful quantity that measures "distance" between two distributions

Definition (KL-Divergence). For any two distributions p, q supported on discrete set X , their Kullback–Leibler (KL) divergence is defined as $KL(p, q) = \sum$ $x \in X$ $p(x) \ln \left[\frac{p(x)}{2}\right]$ $q(x)$ $=\mathbb{E}_{x \sim p} \ln \left[\frac{p(x)}{q(x)}\right]$ $q(x)$

Remarks

- \triangleright Similarly defined for continuous domain, though not needed for now
- \triangleright It is not symmetric: $KL(p, q) \neq KL(q, p)$
- \triangleright Closely related to entropy; also named "relative entropy"
- \triangleright Widely used in practice for measuring distribution distance (e.g., it is the default regularizer for fine-tuning LLMs)

KL-Divergence: An Example

Definition. (Biased Random Coins). For any $\epsilon \in [-\frac{1}{2},\frac{1}{2}]$ $\frac{1}{2}$], let RC_{ϵ} be the binary random coin with $\epsilon/2$ bias -- i.e., it takes value 1/head with prob $\frac{1+\epsilon}{2}$, and 0/tail otherwise.

 $R C_{\epsilon}$ is a Bernoulli random variable with $p = (1 + \epsilon)/2$

≻Calculating KL-divergence

$$
KL(RC_{\epsilon}, RC_0) = \frac{1+\epsilon}{2} \ln \left[\frac{(1+\epsilon)/2}{1/2} \right] + \frac{1-\epsilon}{2} \ln \left[\frac{(1-\epsilon)/2}{1/2} \right]
$$

Claim: $KL(RC_{\epsilon}, RC_0) \leq 2\epsilon^2$ and $KL(RC_0, RC_{\epsilon}) \leq \epsilon^2$ for any $\epsilon \in (0, \frac{1}{2})$

Remark: this ϵ^2 term turns out to be the reason of the $\Omega(T)$! $\sqrt{2}$) lower bound Claim's proof deferred to HW.

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties

- **a.** Gibb's Inequality: $KL(p, q) \ge 0$, with equality if and only if $p = q$
- **b. Chain rule for product distributions**: For $i = 1, \dots, n$, let p_i, q_i be two distributions supported on X_i . $p = p_1 \times p_2 \cdots \times p_n$, $q = q_1 \times q_2 \cdots \times q_n$ be their product distributions. Then $KL(p, q) = \sum_{i=1}^{n} KL(p_i, q_i)$.
- **c.** Pinsker's inequality: For any event $A \subseteq X$, we have $2[p(A) - q(A)]^2 \leq KL(p, q)$

Remarks.

- \triangleright The probability difference of *any event* is upper bounded by $O(\sqrt{KL(p, q)})$
- Ø Illustrates why it captures "divergence" between two distributions
- ≻ Pinsker's inequality implies $KL(RC_0, RC_{\epsilon}) \geq \epsilon^2/2$ (compare to previous claim $KL(RC_0, RC_{\epsilon}) \leq \epsilon^2$

Properties of KL-Divergence

Theorem: KL-divergence satisfies the following properties

- **a.** Gibb's Inequality: $KL(p, q) \ge 0$, with equality if and only if $p = q$
- **b.** Chain rule for product distributions: For $i = 1, \dots, n$, let p_i, q_i be two distributions supported on X_i . $p = p_1 \times p_2 \cdots \times p_n$, $q = q_1 \times q_2 \cdots \times q_n$ be their product distributions. Then $KL(p, q) = \sum_{i=1}^{n} KL(p_i, q_i)$.
- **c.** Pinsker's inequality: For any event $A \subseteq X$, we have $2[p(A) - q(A)]^2 \leq KL(p, q)$

Proofs deferred to HW1.

Exercise with KL & a Warm-up Lower-Bound Problem

How many coin flips are needed to confidently tell it is fair or not?

 \triangleright You know a coin is either RC_0 or RC_6

- RC_0 is called a fair coin, and RC_ϵ has $\epsilon/2$ bias
- \triangleright You can flip the coin T times
- ØBased on your observations, you have a (deterministic) decision rule to decide it is fair or biased:

Rule: $\{0,1\}^T \rightarrow \{\text{fair, biased}\}\$

 \triangleright You know a coin is either RC_{α} or RC_{ϵ}

• $RC₀$ is called a fair coin, and RC_{ϵ} has $\epsilon/2$ bias

 \triangleright You can flip the coin T times

ØBased on your observations, you have a (deterministic) decision rule to decide it is fair or biased:

Rule: $\{0,1\}^T \rightarrow \{\text{fair, biased}\}\$

Question: how large your T needs to at least be for you to be correct with high prob in the following sense?

 $Pr[Rule(observations) = fair | RC₀] \ge 3/4$ (1) $Pr[Rule(observations) = biased | RC_e] \ge 3/4$ (2)

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof

≻ The decision rule is deterministic, so there is a subset $A_0 \subseteq \{0,1\}^T$ of events such that

> Rule(x) = fair for any $x \in A_0$ Rule(x) = biased for any $x \notin A_0$

≻ Following accuracy requirement implies A_0 happens with probability \geq 3/4 under RC_0 , but happens with prob $\leq 1/4$ under RC_{ϵ}

Question: how large your T needs to at least be for you to be correct with high prob in the following sense?

 $Pr[Rule(observations) = fair | RC₀] \ge 3/4$ (1) $Pr[Rule(observations) = biased | RC_e] \ge 3/4$ (2)

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof

≻ The decision rule is deterministic, so there is a subset $A_0 \subseteq \{0,1\}^T$ of events such that

> Rule(x) = fair for any $x \in A_0$ Rule(x) = biased for any $x \notin A_0$

≻ Following accuracy requirement implies A_0 happens with probability \geq 3/4 under RC_0 , but happens with prob $\leq 1/4$ under RC_{ϵ}

That is, $Pr(A_0|RC_0) - Pr(A_0|RC_1) \geq 3/4 - 1/4 = 1/2$

Next we employ properties of KL to show T has to be large to achieve the above inequality

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof (con'd)

That is, $Pr(A_0|RC_0) - Pr(A_0|RC_\epsilon) \geq 3/4 - 1/4 = 1/2$

>Let $p_i = RC_0$, $q_i = RC_{\epsilon}$; consider product distributions $p = \Pi_{i=1}^T p_i$, $q =$ $\Pi_{i=1}^T q_i$

 $\triangleright p, q$ are measures over {0,1}^T ⊇ A_0 , so Pinsker's inequality told us

$$
KL(p,q) \ge 2|\Pr(A_0|RC_0) - \Pr(A_0|RC_{\epsilon})|^2 \ge 1/2
$$

14

 \triangleright Employ chain rule to upper bound KL:

$$
KL(q, q) = \sum_{i=1}^{T} KL(p_i, q_i) \le T\epsilon^2
$$

 \triangleright Combing these two inequalities we have

$$
T \ge \frac{KL(p, q)}{\epsilon^2} \ge \frac{1}{2\epsilon^2}
$$

Claim: Fix a decision rule that satisfies (1) and (2). Then $T \ge \frac{1}{2\epsilon^2}$.

Proof (con'd)

That is, $Pr(A_0|RC_0) - Pr(A_0|RC_\epsilon) \geq 3/4 - 1/4 = 1/2$

>Let $p_i = RC_0$, $q_i = RC_{\epsilon}$; consider product distributions $p = \Pi_{i=1}^T p_i$, $q =$ $\Pi_{i=1}^T q_i$

 $\triangleright p, q$ are measures over {0,1}^T ⊇ A_0 , so Pinsker's inequality told us

$$
KL(p,q) \ge 2|\Pr(A_0|RC_0) - \Pr(A_0|RC_{\epsilon})|^2 \ge 1/2
$$

 \triangleright Employ chain rule to upper bound KL:

Remarkably, the proof applies to any decision rule; fundamentally, it is because Pinsker's inequality holds for any \overline{A}_0

$$
T \ge \frac{KL(p, q)}{\epsilon^2} \ge \frac{1}{2\epsilon^2}
$$

 \triangleright Technical Preparations

≻Detour: Best-Arm Identification (BAI) Lower Bounds

≻MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

A Variant of MAB: Best-Arm Identification (BAI)

≻ Same setup as MAB, but task is to identify best arm i^* (= arg max $\max_{i \in [k]} \mu_i$)

- \triangleright Same strategy process of pulling arms i^1 , i^2 , ..., i^t , ..., i^T
- **≻ Given T rounds of opportunities, performance is measured by** *probability of success* $Pr(I^T = i^*)$

A Variant of MAB: Best-Arm Identification (BAI)

≻ Same setup as MAB, but task is to identify best arm i^* (= arg max $\max_{i \in [k]} \mu_i$)

- \triangleright Same strategy process of pulling arms i^1 , i^2 , ..., i^t , ..., i^T
- **≻ Given T rounds of opportunities, performance is measured by** *probability of success* $Pr(I^T = i^*)$
	- Clearly, if T is very large, we can easily succeed with high prob.
	- **Goal Next**: understand how large T needs to be in order to guarantee reasonable success on *any problem instance*

By proving a statement of form "*if T* \leq *?*, then for any algorithm will have at *least constant probability of failing to find optimal arm on some instance*"

Imaging the Difficult Instances…

What instance would be difficult for BAI?

 \triangleright All arms have equal mean, except one of them that is slightly higher

- Difficult since every sub-optimal arm is equally confusing
- Ø Hopefully, each arm has large variance so rewards are random enough to "hide" the true mean
	- Interestingly, Bernoulli distributions (i.e., biased coins) turn out to already be sufficiently hard

Construction of Lower Bound Instances

- \triangleright Each D_i is Bernoulli
- \triangleright All of them are RC_0 , except one arm a is RC_{ϵ}

Construction of Lower Bound Instances

- \triangleright Each D_i is Bernoulli
- \triangleright All of them are RC_0 , except one arm a is RC_{ϵ}

Remark.

This is not a single instance, but rather a set of k instances $$ each $a \in [k]$ correspond to one *problem instance* P_a

Formally, $P_a = \{k \text{ bandits with } D_a = RC_{\epsilon} \text{, all other } D_i = RC_0 \}$

A Note on Lower Bound Proof Approaches

- \triangleright Generally, two approaches to show an algorithm can perform bad on some instance
	- 1. Show that an algorithm does bad on some instance

A Note on Lower Bound Proof Approaches

- \triangleright Generally, two approaches to show an algorithm can perform bad on some instance
	- 1. Show that an algorithm does bad on some instance
	- 2. Craft a set of instance, then randomly sample one for the algorithm to solve; show that the algo's expected performance is bad

A Note on Lower Bound Proof Approaches

- \triangleright Generally, two approaches to show an algorithm can perform bad on some instance
	- 1. Show that an algorithm does bad on some instance
	- 2. Craft a set of instance, then randomly sample one for the algorithm to solve; show that the algo's expected performance is bad
- Ø (2)⇒ (1) because if an algorithm perform bad in expectation, it must have performed bad in at least one instance on the support
- \triangleright A stronger version of (1) ⇒ (2):

if an algo does bad on a constant fraction of instances, then it has constant probability to perform bad on a randomly sampled instance

- \geq (1) suffices for a lower bound proof, but we use (2) often due to proof convenience
- ≻ For our problem, we will use the set of instances $\{P_a\}_{a\in[k]}$

Lower Bounds for BAI

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]},$ where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least $\lceil k/3 \rceil$ P_a instances such that

 $Pr(I^T \neq a | P_a) \geq 1/2$

 $P_a = \{k \text{ bandits with } D_a = RC_{\epsilon} \text{, all other } D_i = RC_0 \}$

Lower Bounds for BAI

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]},$ where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least $\lceil k/3 \rceil$ P_a instances such that

 $Pr(I^T \neq a | P_a) \geq 1/2$

Corollary: Consider any BAI algorithm (possibly randomized) running on a uniformly randomly sampled instance from set $\{P_a\}_{a\in [k]}$ with $T\leq \frac{ck}{\epsilon^2}.$

Then Pr($I^T \neq i^*$) $\geq \frac{1}{6}$ where probability is over random choice of instance P_a , randomness of rewards and the algorithm.

- ≻ For deterministic algo, we have $Pr(I^T \neq a | P_a)$ ≥ 1/2 for at least 1/3 of instances in $\{P_a\}_{a\in[k]}\Rightarrow \Pr(I^T\neq i^*)\geq \frac{1}{2}\times\frac{1}{3}$ 3 $\frac{a}{6}$ on a sampled instance
- \triangleright Any randomized algorithm is a distribution over deterministic algorithm $\Rightarrow Pr(I^T \neq i^*) \geq \frac{1}{6}$ 6 by taking expectation over algo' randomness

Next: Proof of Theorem 0 in 3 Steps

Step 1: Converting the question to an instance testing problem by introducing a benchmark scenario

Introduce instance P_0 , where all k arms are independent RC_0 (i.e., non-biased coins)

 \triangleright Intuitions for remaining proofs

- We say an arm $j \in [k]$ is "neglected" by the algorithm if (1) it was not played too often; (2) it has low probability to be the final output I^T
- Will show under any deterministic algorithm to P_0 , a constant fraction of arms are neglected

because not all arms can be played a lot, simply by counting

Step 1: Converting the question to an instance testing problem by introducing a benchmark scenario

Introduce instance P_0 , where all k arms are independent RC_0 (i.e., non-biased coins)

 \triangleright Intuitions for remaining proofs

- We say an arm $j \in [k]$ is "neglected" by the algorithm if (1) it was not played too often; (2) it has low probability to be the final output I^T
- Will show under any deterministic algorithm to P_0 , a constant fraction of arms are neglected
	- because not all arms can be played a lot, simply by counting
- Now consider any neglected arm under the same algorithm in P_i $KL(P_i, P_0)$ is likely small since they only slightly differ on arm j, Pinsker's Inequality told us $Pr(I^T \neq j | P_i) - Pr(I^T \neq j | P_0)$ must be small

Tricky part is to figure out how small this could *tightly* be!

Step 2: Characterizing "neglected arms" under any deterministic algorithm on benchmark instance P_0

Lemma 1: For any deterministic algorithm on P_0 , there is a subset $J \subset [k]$ of arms such that

- 1) $|J| \ge k/3$
- 2) For any $j \in J$, $\mathbb{E}(N_j^T | P_0) \leq \frac{3T}{k}$

3) For any $j \in J$, $Pr(I^T = j | P_0) \leq \frac{3}{k}$

Recall: I^T is the (random) arm pulled at last round T N^T_j is the number of times arm j is pulled until round T

- \triangleright That is, *I* contains all arms that are "neglected" in the sense of property 2) and 3)
- \triangleright Property 1) says that *J* has size at least $k/3$

Step 2: Characterizing "neglected arms" under any deterministic algorithm on benchmark instance P_0

Lemma 1: For any deterministic algorithm on P_0 , there is a subset $J \subset [k]$ of arms such that

- 1) $|J| \ge k/3$
- 2) For any $j \in J$, $\mathbb{E}(N_j^T | P_0) \leq \frac{3T}{k}$
- 3) For any $j \in J$, $Pr(I^T = j | P_0) \leq \frac{3}{k}$

Intuition of the proof

 \triangleright Follows from counting argument:

- At least 2 k /3 arms satisfy property 2) since $\sum_{j=1}^T N_j^T = T$ is always true
- At least 2 $k/3$ arms satisfy property 3) since $\sum_{j=1}^{T} \Pr\left(I_j^T = j\right) = 1$

Formal proof left to HW1!

Step 2: Characterizing "neglected arms" under any deterministic algorithm on benchmark instance P_0

Lemma 1: For any deterministic algorithm on P_0 , there is a subset $J \subset [k]$ of arms such that

- 1) $|J| \ge k/3$
- 2) For any $j \in J$, $\Pr\left(N_j^T \leq \frac{24T}{k} | P_0 \right) \geq \frac{7}{8}$

3) For any
$$
j \in J
$$
, $\Pr(I^T = j | P_0) \leq \frac{3}{k}$

Corollary: Property 2) above implies $Pr\left(N_j^T \leq \frac{24T}{k} | P_0 \right) \geq \frac{7}{8}$

Proof.
\n
$$
\Pr\left(N_j^T > \frac{24T}{k} | P_0\right) \le \frac{\mathbb{E}(N_j^T | P_0)}{24T/k} \qquad \text{By Markov's inequality}
$$
\n
$$
\Pr(N > x) \le \frac{\mathbb{E}(N)}{x}
$$
\n
$$
\le 1/8 \qquad \text{By plugging in property 2)}
$$

This implies the corollary

The intuitive idea is straightforward

- Want to show KL divergence $KL(P_0, P_j)$ is upper bounded
- Pinsker's Inequality then implies if *j* is neglected under P_0 , it will be under P_i as well

Technical argument needs careful treatment

– Simple argument yields $T \leq \frac{c}{\epsilon^2}$ ϵ^2

– To get the stronger $T\leq \frac{c\bm{k}}{\epsilon^2}$ bound, we need to carefully define the (random) events that determine a BAI algorithm's behavior

 \triangleright A deterministic BAI algorithm maps any observed reward sequence thus far to the next to-be-pulled arm

$$
\text{Alg: } \{0,1\}^t \to [k]
$$

 \triangleright Such an Alg can be viewed as an adaptive way to open exactly T cells of a random reward table

 \triangleright A deterministic BAI algorithm maps any observed reward sequence thus far to the next to-be-pulled arm

$$
\text{Alg: } \{0,1\}^t \to [k]
$$

 \triangleright Such an Alg can be viewed as an adaptive way to open exactly T cells of a random reward table

- \triangleright We only care about event $Pr(I^T = j)$
- \triangleright Randomness purely comes from this random reward table
	- Since Alg is deterministic it maps a sequence of T rewards to a deterministic choice of I^T

- \triangleright We only care about event $Pr(I^T = j)$
- \triangleright Randomness purely comes from this random reward table
	- Since Alg is deterministic it maps a sequence of T rewards to a deterministic choice of I^T
	- These T rewards can be from different rows/arms

- \triangleright Bad news: generally, every reward cell below can possibly affect the algorithm
	- We particularly do not like that all T cells in j 's row can affect Alg

 \triangleright Bad news: generally, every reward cell below can possibly affect the algorithm

- We particularly do not like that all T cells in j 's row can affect Alg
	- \Rightarrow too much randomness that makes $KL(P_0, P_j)$ too large

 \Rightarrow a non-tight bound c/ϵ^2

 \triangleright Key idea: only consider first $m = \min\{\frac{24T}{k}, T\}$ cells in *j*'th row, though allow other rows' all random rewards (since they are equal under P_0 , P_i)

From Lemma 1, these are precisely

Formally, consider

He sensitive of "sealed area" the condition of "neglected arms"

 \triangleright Key idea: only consider first $m = \min\{\frac{24T}{k}, T\}$ cells in *j*'th row, though allow other rows' all random rewards (since they are equal under P_0 , P_i)

Formally, consider

From Lemma 1, these are precisely the condition of "neglected arms"

 \triangleright Key idea: only consider first $m = \min\{\frac{24T}{k}, T\}$ cells in *j*'th row, though allow other rows' all random rewards (since they are equal under P_0 , P_j)

Formally, consider

Both events depend only on first m rewards of row j

Event A ₁	Event A ₂		
$\leq Pr(I^t = j \text{ AND } N_j^T \leq m) + Pr(N_j^T > m)$			
$Pr(I^t = j) = Pr(I^t = j \text{ AND } N_j^T \leq m) + Pr(I^t = j \text{ AND } N_j^T > m)$			
1	0	...	
2	1	0	
...	...		
j	0	1	1
...	...		

 k 0 1 …

- \triangleright Let $p_j^t = RC_0$ for $t = 1, 2, ..., m$ and $p_i^t = RC_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- \triangleright Let $q_j^t = R C_{\epsilon}$ for $t = 1, 2, ..., m$ and $q_i^t = R C_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- Event A_1 Event A_2 \triangleright Both event A_1 , A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

$$
\leq \Pr(I^t = j \text{ AND } N_j^T \leq m) + \Pr(N_j^T > m)
$$

 $Pr(I^t = j) = Pr(I^t = j \text{ AND } N_j^T \leq m) + Pr(I^t = j \text{ AND } N_j^T > m)$

- \triangleright Let $p_j^t = RC_0$ for $t = 1, 2, ..., m$ and $p_i^t = RC_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- \triangleright Let $q_j^t = R C_{\epsilon}$ for $t = 1, 2, ..., m$ and $q_i^t = R C_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- Event A_1 Event A_2 \triangleright Both event A_1 , A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

$$
Pr(I^t = j) \leq Pr(I^t = j \text{ AND } N_j^T \leq m) + Pr(N_j^T > m)
$$

By chain rule

$$
KL(p, q) = \sum_{i \neq j, t \in [T]} KL(p_i^t, q_i^t) + \sum_{t \in [m]} KL(p_j^t, q_j^t)
$$

=
$$
\sum_{i \neq j, t \in [T]} KL(RC_0, RC_0) + \sum_{t \in [m]} KL(RC_0, RC_\epsilon)
$$

=
$$
m KL(RC_0, RC_\epsilon)
$$

$$
\leq \frac{24T}{k} \epsilon^2
$$
 Since $m = \min\{\frac{24T}{k}, T\}$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

- \triangleright Let $p_j^t = RC_0$ for $t = 1, 2, ..., m$ and $p_i^t = RC_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- \triangleright Let $q_j^t = R C_{\epsilon}$ for $t = 1, 2, ..., m$ and $q_i^t = R C_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- Event A_1 Event A_2 \triangleright Both event A_1 , A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

 $\leq \Pr(I^t = j \text{ AND } N_j^T \leq m) + \Pr(N_j^T > m)$ $Pr(I^t = j)$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$ 1

$$
\Rightarrow |\Pr(A|P_0) - \Pr(A|P_j)| \le \sqrt{KL(p, q)/2} \le \frac{1}{8}
$$

- \triangleright Let $p_j^t = RC_0$ for $t = 1, 2, ..., m$ and $p_i^t = RC_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- \triangleright Let $q_j^t = R C_{\epsilon}$ for $t = 1, 2, ..., m$ and $q_i^t = R C_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- Event A_1 Event A_2 \triangleright Both event A_1 , A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

 $\leq \Pr(I^t = j \text{ AND } N_j^T \leq m) + \Pr(N_j^T > m)$ $Pr(I^t = j)$

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

$$
\Rightarrow |\Pr(A|P_0) - \Pr(A|P_j)| \le \sqrt{KL(p, q)/2} \le \frac{1}{8}
$$

$$
\Pr(A_1|P_j) \le \Pr(A_1|P_0) + \frac{1}{8} \qquad \Pr(A_2|P_j) \le \Pr(A_2|P_0) + \frac{1}{8}
$$

\n
$$
\le \frac{3}{k} + \frac{1}{8} \qquad \text{(by lemma 1)} \qquad \le \frac{1}{8} + \frac{1}{8} \qquad \text{(by lemma 1)}
$$

\n
$$
\le \frac{1}{4}
$$

\nBy considering

By considering instances with large k

- \triangleright Let $p_j^t = RC_0$ for $t = 1, 2, ..., m$ and $p_i^t = RC_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- \triangleright Let $q_j^t = R C_{\epsilon}$ for $t = 1, 2, ..., m$ and $q_i^t = R C_0$ for $i \neq j$ and $t = 1, 2, ..., T$
- Event A_1 Event A_2 \triangleright Both event A_1 , A_2 are in support of $p = \prod_{i \neq j, t \in [T]} p_i^t \cdot \prod_{t \in [m]} p_j^t$ and a similarly defined q

 $\leq \Pr(I^t = j \text{ AND } N_j^T \leq m) + \Pr(N_j^T > m)$ $Pr(I^t = j) \leq Pr(I^t = j \text{ AND } N_i^T \leq m) + Pr(N_i^T > m) \leq$ 1 2 on instance P_j

Theorem 0 assumed $T \leq \frac{ck}{\epsilon^2}$ for a small constant $c \Rightarrow KL(p,q) \leq \frac{1}{32}$

$$
\Rightarrow |\Pr(A|P_0) - \Pr(A|P_j)| \le \sqrt{KL(p,q)/2} \le \frac{1}{8}
$$

$$
\Pr(A_1|P_j) \le \Pr(A_1|P_0) + \frac{1}{8} \qquad \Pr(A_2|P_j) \le \Pr(A_2|P_0) + \frac{1}{8}
$$

\n
$$
\le \frac{3}{k} + \frac{1}{8} \qquad \text{(by lemma 1)} \qquad \le \frac{1}{8} + \frac{1}{8} \qquad \text{(by lemma 1)}
$$

\n
$$
\le \frac{1}{4}
$$

\nBy considering

By considering instances with large k

To Summarize

We proved

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]},$ where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least $\lceil k/3 \rceil$ P_a instances such that

$$
\Pr(I^T \neq a | P_a) \geq 1/2
$$

Notably, this theorem does not hold for randomized algorithm since the $\lceil k/3 \rceil$ P_a instances may be different under different algorithm randomness

Any deterministic algorithm "fails" at a constant fraction of constructed instances

To Summarize

We proved

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]},$ where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least $\lceil k/3 \rceil$ P_a instances such that

$$
\Pr(I^T \neq a | P_a) \geq 1/2
$$

Notably, this theorem does not hold for randomized algorithm since the $\lceil k/3 \rceil$ P_a instances may be different under different algorithm randomness

Any deterministic algorithm "fails" at a constant fraction of constructed instances

To Summarize

We proved

Theorem 0: Consider BAI with $T \leq \frac{ck}{\epsilon^2}$ on instances from set $\{P_a\}_{a \in [k]},$ where c is a small enough absolute constant.

For any deterministic algorithm for this problem, there exists at least $\lceil k/3 \rceil$ P_a instances such that

 $Pr(I^T \neq a | P_a) \geq 1/2$

Notably, this theorem does not hold for randomized algorithm since the $\lceil k/3 \rceil$ P_a instances may be different under different algorithm randomness

Corollary: Consider any BAI algorithm (possibly randomized) running on a uniformly randomly sampled instance from set $\{P_a\}_{a\in [k]}$ with $T\leq \frac{ck}{\epsilon^2}.$ Then Pr($I^T \neq i^*$) $\geq \frac{1}{6}$ where probability is over random choice of instance P_a , randomness of rewards and the algorithm.

 \triangleright Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

≻MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon T and number of arms k .

For any bandit algorithm, running on a uniformly randomly sampled instance from $\{P_a\}_{a\in[k]}$ with $\epsilon = \sqrt{ck/T}$ for a sufficiently small constant c, we have $\mathbb{E}(R^T) \geq \Omega(\sqrt{kT})$

where expectation is over choice of instance P_a , randomness in rewards and Algo.

Proof.

- \triangleright Note that $T = ck/\epsilon^2$ by our choice of ϵ
- \triangleright Previous corollary says any algorithm running on the stated random instance satisfies Pr($I^t \neq i^*$) $\geq \frac{1}{6}$ 6 for any $t \leq c k/\epsilon^2 (= T)$
- **►** This means we suffer expected regret $\geq \frac{1}{6}$ 6 $\times \frac{e}{2}$ $\frac{\epsilon}{2}$ at each round $t\leq T$ since ϵ in the constructed instance, any sub-optimal arm has $\Delta = \epsilon/2$
- \triangleright In total, we have

$$
\mathbb{E}(R^T) \ge \frac{\epsilon}{12} \times T = \Omega(\sqrt{kT})
$$

Regret Lower Bound for MAB

Theorem 1: Fixed time horizon T and number of arms k .

For any bandit algorithm, running on a uniformly randomly sampled instance from $\{P_a\}_{a\in[k]}$ with $\epsilon = \sqrt{ck/T}$ for a sufficiently small constant c, we have $\mathbb{E}(R^T) \geq \Omega(\sqrt{kT})$

where expectation is over choice of instance P_a , randomness in rewards and Algo.

Remarks.

- Ø This is called "worst-case lower bound"
	- You designed an algorithm;
	- Someone tries to "stress test" your algorithm by trying to feeding in the most challenging instance
	- The bound captures the best you can do under such challenge
- Ø Also known as "minimax lower bound"

min Algorithm max *Regret*(Algo|Ins)

 \triangleright Technical Preparations

ØDetour: Best-Arm Identification (BAI) Lower Bounds

≻MAB Regret Lower Bounds

- Instance-Independent Lower Bound
- Instance-Dependent Lower Bounds

That is, remove that "max" in "minimax lower bound", and derive a bound for every instance

Instance-Dependent Regret Lower Bound

Rough format of the statement

"*For any MAB problem instance and time horizon , no algorithm can achieve regret* $E(R^T) = o(Time_{P,T})$ "

 \triangleright However, this claim is clearly not true \rightarrow why?

- Consider a trivial algorithm Alg_a which always pulls arm a
- One of ${ {\rm Alg}}_a \}_{a \in [k]}$ has 0 regret

 \triangleright To have a meaningful result, we need to rule out such "pure luck" algorithms that fail miserably in general, but do well occasionally

Instance-Dependent Regret Lower Bound

Theorem 2. Consider any MAB algorithm that satisfies

 $\mathbb{E}(R^T) \le O(C_{P,\alpha} T^{\wedge}\alpha)$ for any $\alpha > 0$ and any instance P.

Then for any problem instance P, there exists a time T_0 such that for any $T \geq T_0$, we have

$$
\mathbb{E}(R^T) \ge \mu^*(1 - \mu^*) \sum_{i \neq i^*} \frac{\ln T}{\Delta_i}
$$

 \triangleright This is the restriction on the algorithms that we consider

- That is, these are reasonable algorithms that attempted to solve all instances
- \triangleright This bound shows that UCB's gap-dependent regret bound is tight order-wise

Thank You

Haifeng Xu University of Chicago haifengxu@uchicago.edu