DATA 37200 HW1, Winter 2026

Problem 1

We go through the proofs of some useful properties of the KL divergence. For
simplicity, consider discrete distributions P and () in what follows.

(a)

()

Show that for any function f,

Dgr(Lp(f(X)), Lo(f(X))) < Dkr(P, Q).

This is called the “data processing inequality”. Here Lp(f(X)) is notation for
the law/distribution of f(X) when X ~ P. (Hint: it can be done by applying
Jensen’s inequality.)

A version of Bretagnolle-Huber inequality: for any event A
P(A) +Q(A%) > 1 = /1 — exp(—Dx1(P, Q).

For this part, please feel free to refer to chapter 14 of the Lattimore-Szepesvari
textbook which explains the steps. Just write a self-contained proof of the
inequality stated above.

Compute the KL divergence Dy (P, Q) between P = N(uj,07) and Q =
N(/LQa 0‘%)

Problem 2

The Donsker-Varadhan variational formula characterizes the KL divergence as the
convex conjugate (“Legendre transform”) of the cumulant generating function. Let
P and @ be probability measures on a discrete set X'. We wish to prove:

Dkr(P|Q) = Sljlcp {Ep[f(X)] - IHEQ[ef(X)]} :
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(a) The Lower Bound: Let f be any function. Define a new probability measure
()¢ with the Radon-Nikodym derivative Wy — e By considering the non-

dQ Eglef]
negativity of D (P[|Qy), show that:

Dkr(P||Q) = Ep[f] — InEg[e’]

(b) The Optimal Function: Assume P < @ and let g = % be the density. Define
f*=1Ing. Show that f* achieves the value Dy (P|Q).

Problem 3

Pinsker’s inequality is a fundamental result in information theory that bounds the
Total Variation distance between two probability measures by their Kullback-Leibler
divergence:

TV(P,Q) < %DKL(PHQ)

Complete the following steps to derive this inequality using the properties of the
Bernoulli distribution.

(a) Let X ~ Ber(p) for p € (0,1). Prove that the cumulant generating function
(CGF) ¢,(\) = InE[e*] is:

Up(A) =In(1 — p + pet)

(b) Define ¢,(A) = ¥,(A) — Ap as the CGF of the centered Bernoulli variable. Use
a Taylor expansion of ¢,(\) around A = 0 to show that:

(Note: we have already done this in class, but please give a self-contained proof
here for practice. Feel free to refer to notes/textbook.)

(c) By problem 2, the KL divergence between two Bernoulli distributions is the
“Legendre transform” of the CGF: Dk (p||q) = supyer{ p — ¥4(A\)}. Use the
quadratic bound from part (b) to prove:

Drr(pllg) > 2(p — q)?
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(d) Use the Data Processing Inequality for KL divergence and the definition TV (P, Q) =
sup 4 |P(A) — Q(A)| to extend the Bernoulli result to any two probability mea-
sures P and Q:

Dkr(P,Q) > 2TV (P,Q)>.
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