
DATA 37200 HW1, Winter 2026

Problem 1

We go through the proofs of some useful properties of the KL divergence. For
simplicity, consider discrete distributions P and Q in what follows.

(a) Show that for any function f ,

DKL(LP (f(X)),LQ(f(X))) ≤ DKL(P,Q).

This is called the “data processing inequality”. Here LP (f(X)) is notation for
the law/distribution of f(X) when X ∼ P . (Hint: it can be done by applying
Jensen’s inequality.)

(b) A version of Bretagnolle-Huber inequality: for any event A

P (A) +Q(AC) ≥ 1−
√

1− exp(−DKL(P,Q)).

For this part, please feel free to refer to chapter 14 of the Lattimore-Szepesvari
textbook which explains the steps. Just write a self-contained proof of the
inequality stated above.

(c) Compute the KL divergence DKL(P,Q) between P = N(µ1, σ
2
1) and Q =

N(µ2, σ
2
2).

Problem 2

The Donsker-Varadhan variational formula characterizes the KL divergence as the
convex conjugate (“Legendre transform”) of the cumulant generating function. Let
P and Q be probability measures on a discrete set X . We wish to prove:

DKL(P∥Q) = sup
f

{
EP [f(X)]− lnEQ[e

f(X)]
}
.
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(a) The Lower Bound: Let f be any function. Define a new probability measure

Qf with the Radon-Nikodym derivative
dQf

dQ
= ef

EQ[ef ]
. By considering the non-

negativity of DKL(P∥Qf ), show that:

DKL(P∥Q) ≥ EP [f ]− lnEQ[e
f ]

(b) The Optimal Function: Assume P ≪ Q and let g = dP
dQ

be the density. Define

f ∗ = ln g. Show that f ∗ achieves the value DKL(P∥Q).

Problem 3

Pinsker’s inequality is a fundamental result in information theory that bounds the
Total Variation distance between two probability measures by their Kullback-Leibler
divergence:

TV (P,Q) ≤
√

1

2
DKL(P∥Q)

Complete the following steps to derive this inequality using the properties of the
Bernoulli distribution.

(a) Let X ∼ Ber(p) for p ∈ (0, 1). Prove that the cumulant generating function
(CGF) ψp(λ) = lnE[eλX ] is:

ψp(λ) = ln(1− p+ peλ)

(b) Define ϕp(λ) = ψp(λ)− λp as the CGF of the centered Bernoulli variable. Use
a Taylor expansion of ϕp(λ) around λ = 0 to show that:

ϕp(λ) ≤
λ2

8

(Note: we have already done this in class, but please give a self-contained proof
here for practice. Feel free to refer to notes/textbook.)

(c) By problem 2, the KL divergence between two Bernoulli distributions is the
“Legendre transform” of the CGF: DKL(p∥q) = supλ∈R{λp− ψq(λ)}. Use the
quadratic bound from part (b) to prove:

DKL(p∥q) ≥ 2(p− q)2
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(d) Use the Data Processing Inequality for KL divergence and the definition TV (P,Q) =
supA |P (A)−Q(A)| to extend the Bernoulli result to any two probability mea-
sures P and Q:

DKL(P,Q) ≥ 2TV (P,Q)2.
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