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Hoeffding’s inequality (bounded independent sums)

Theorem (Hoeffding)

Let X1, . . . ,Xn be independent random variables with Xi ∈ [ai , bi ]
almost surely. Let Sn =

∑n
i=1 Xi and µ = ESn =

∑n
i=1 EXi . Then

for every t > 0,

Pr
(
Sn − µ ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
and

Pr
(
Sn − µ ≤ −t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
.

So

Pr
(
|Sn − µ| ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai )2

)
.

Special case: if Xi ∈ [0, 1] then Pr(Sn − µ ≥ t) ≤ exp(−2t2/n).



Proof (Chernoff bound + Hoeffding’s lemma)

Step 1: Chernoff (exponential Markov). For any λ > 0,

Pr(Sn − µ ≥ t) = Pr
(
eλ(Sn−µ) ≥ eλt

)
Pr
(
eλ(Sn−µ) ≥ eλt

)
≤ e−λt Eeλ(Sn−µ) = e−λt

n∏
i=1

Eeλ(Xi−EXi ).

Step 2: Hoeffding’s lemma. (We will prove it afterward.) If
Y ∈ [a, b] a.s. and EY = 0, then for all λ ∈ R,

EeλY ≤ exp
(λ2(b − a)2

8

)
.

Apply to Yi = Xi − EXi ∈ [ai − EXi , bi − EXi ] to get

Eeλ(Xi−EXi ) ≤ exp
(λ2(bi − ai )

2

8

)
.



Step 3: Combine and optimize λ.

Pr(Sn − µ ≥ t) ≤ exp
(
− λt +

λ2

8

n∑
i=1

(bi − ai )
2
)
.

Minimizing the exponent gives λ⋆ =
4t∑n

i=1(bi − ai )2
, yielding

Pr(Sn − µ ≥ t) ≤ exp
(
− 2t2∑n

i=1(bi − ai )2

)
.

The lower-tail bound follows by applying the same argument to
−(Sn − µ).



Hoeffding’s lemma

Lemma (Hoeffding)

If Y ∈ [a, b] almost surely and EY = 0, then for all λ ∈ R,

EeλY ≤ exp
(λ2(b − a)2

8

)
.

First step of proof: Take log of both sides, equivalent to show

logEeλY ≤ λ2(b − a)2/8

In what follows we will analyze the degree-2 Taylor expansion of
the lhs in λ.



Hoeffding’s lemma: setup (cumulant generating function)

Let

K (λ) := logE eλY (the cumulant generating function of Y ).

We want to show

K (λ) ≤ λ2(b − a)2

8
for all λ ∈ R.

Two easy facts:

K (0) = log 1 = 0, K ′(0) =
E[Ye0]
E[e0]

= EY = 0.

So if we can bound K ′′(λ) uniformly, we can integrate twice
(“2nd-order Taylor with remainder”).



Key identity: K ′′(λ) is a variance under a tilted measure

Define the tilted expectation

Eλ[f (Y )] :=
E
[
f (Y )eλY

]
E[eλY ]

.

Differentiate:

K ′(λ) =
E[YeλY ]
E[eλY ]

= Eλ[Y ].

Differentiate again (quotient rule):

K ′′(λ) = Eλ[Y
2]−

(
Eλ[Y ]

)2
= Varλ(Y ).

Thus, Hoeffding’s lemma reduces to bounding a variance.



Uniform bound: variance of a bounded variable

If Z ∈ [a, b] almost surely, then for any probability measure,

Var(Z ) ≤ (b − a)2

4
.

Proof (one line): let m = (a+ b)/2. Then |Z −m| ≤ (b − a)/2,
hence

(Z −m)2 ≤ (b − a)2

4
.

Taking expectations gives E(Z −m)2 ≤ (b − a)2/4, and since
Var(Z ) ≤ E(Z −m)2, the claim follows.
Apply this with Z = Y under the tilted measure Pλ:

K ′′(λ) = Varλ(Y ) ≤ (b − a)2

4
for all λ.



Integrate twice (a rigorous “2nd-order Taylor bound”)

Using K (0) = K ′(0) = 0,

K (λ) =

∫ λ

0
K ′(s) ds =

∫ λ

0

∫ s

0
K ′′(t) dt ds =

∫ λ

0
(λ− t)K ′′(t) dt.

Now plug in the uniform bound K ′′(t) ≤ (b − a)2/4:

K (λ) ≤
∫ λ

0
(λ− t)

(b − a)2

4
dt =

(b − a)2

4
· λ

2

2
=

λ2(b − a)2

8
.

Exponentiating both sides yields

EeλY ≤ exp
(λ2(b − a)2

8

)
.



Analysis of NAIVE-EE (aka ETC, Explore-Then-Commit)

Recall: we have T rounds of interaction, k arms, and when we pull
arm i we receive reward ri ∼ Di . For simplicity, we assume
ri ∈ [0, 1] always.
Suppose we pull each arm m times in the exploration phase. Then,
by Hoeffding’s inequality, the sample mean

µ̂i =
1

m

m∑
j=1

r
(j)
i

satisfies with probability at least 1− δ/K that

|µ̂i − µi | ≤
√

2 log(2K/δ)/m.

By the union bound, this holds for all i ∈ [K ] with probability at
least 1− δ.



Completing analysis

Under the high probability event that for all i ∈ [K ]

|µ̂i − µi | ≤
√

2 log(2K/δ)/m.

we can now bound the regret. Let µ∗ = maxµi be the true optimal
reward. Let µ̃ = max µ̂i be the best sample reward. Then in each
of the T − Km exploitation rounds, our regret in expectation is at
most

ϵ := 2
√
2 log(2K/δ)/m.

(Why?) In the first Km rounds we can lose at most Km reward. So

(total regret) ≤ Km + (T − Km)ϵ.

Take m = T 2/3, then we see the total regret is O(KT 2/3).



Looking forward

NAIVE-EE (also called ETC, Explore-Then-Commit) is easy to
analyze but it’s not very optimal. T 2/3 scaling of regret.

We want to understand how combining learning and
decision-making can lead to improvements. Act more like an
intelligent person ? This will lead to an improvement to regret
scaling as T 1/2 log1/2(T ).

(Think: how many times do you touch a stove before learning?)

To analyze better strategies, we need to spend some time
learning/reviewing martingales (iterated betting games).



Motivation: “fair game” over time

We observe random information over time:

X0, X1, X2, . . .

Think: wealth of a gambler after t rounds, or a running estimate
after seeing t samples.
Informal idea (fair game):

Given everything you know up to time t, your expected
wealth at time t + 1 is exactly your current wealth.

That idea is a martingale.



Filtration = “information revealed so far”

Let Ft denote the information you have after observing the process
up to time t.
Concrete picture: Ft is “everything you can compute from
X0, . . . ,Xt”.
Formally (but you can treat this as notation):

F0 ⊆ F1 ⊆ · · ·

This increasing family (Ft) is called a filtration.



Definition: martingale

A sequence (Xt)t≥0 is a martingale w.r.t. (Ft) if:

1. Xt is determined by time-t information (i.e. Xt is
Ft-measurable),

2. E|Xt | < ∞,

3. Fairness: for all t,

E[Xt+1 | Ft ] = Xt .

Equivalent form (martingale differences): define
Dt+1 := Xt+1 − Xt . Then

E[Dt+1 | Ft ] = 0.



Examples

1) Symmetric random walk. Let ξ1, ξ2, . . . be i.i.d. with
P(ξi = +1) = P(ξi = −1) = 1/2, and set St =

∑t
i=1 ξi . With

Ft = σ(ξ1, . . . , ξt),

E[St+1 | Ft ] = St + E[ξt+1 | Ft ] = St .

So (St) is a martingale.

2) “Conditional expectation process.” For any integrable
random variable Z , define

Xt := E[Z | Ft ].

Then (Xt) is a martingale (“tower property”): E[Xt+1 | Ft ] = Xt .



Azuma–Hoeffding inequality (bounded differences)

Let (Xt)
n
t=0 be a martingale w.r.t. (Ft).

Assume bounded increments: for constants c1, . . . , cn,

|Xt − Xt−1| ≤ ct almost surely for each t = 1, . . . , n.

Then for all u > 0,

P(Xn − X0 ≥ u) ≤ exp

(
− u2

2
∑n

t=1 c
2
t

)
,

and similarly

P(|Xn − X0| ≥ u) ≤ 2 exp

(
− u2

2
∑n

t=1 c
2
t

)
.



How to read Azuma–Hoeffding (intuition + special case)

Intuition: Xn − X0 is a sum of martingale differences,

Xn − X0 =
n∑

t=1

(Xt − Xt−1),

and each term is mean-zero given the past and bounded by ct .

Special case: if all steps are bounded by the same c (i.e. ct = c),
then

P(|Xn − X0| ≥ u) ≤ 2 exp

(
− u2

2nc2

)
.

So typical fluctuations are on the order of c
√
n.



Proof of Azuma-Hoeffding

Almost exactly the same as Hoeffding, if we are careful to use
definitions correctly.



Azuma–Hoeffding: Step 1 (Chernoff + tower property)
Let (Xt)

n
t=0 be a martingale w.r.t. (Ft) and set

Dt := Xt − Xt−1 (t = 1, . . . , n), so Xn − X0 =
n∑

t=1

Dt ,

with E[Dt | Ft−1] = 0. As before we start with Chernoff bound.
For any λ > 0,

Pr(Xn − X0 ≥ t) = Pr
(
eλ(Xn−X0) ≥ eλt

)
≤ e−λt Eeλ(Xn−X0).

Key difference vs. i.i.d.: we cannot factor the MGF as a product.
Instead we peel one step at a time using conditional expectation:

Eeλ(Xn−X0) = E

[
exp
(
λ

n∑
s=1

Ds

)]
= E

[
exp
(
λ

n−1∑
s=1

Ds

)
E
[
eλDn | Fn−1

]]
.

Now apply Hoeffding’s lemma conditionally to Dn given Fn−1

(using E[Dn | Fn−1] = 0 and |Dn| ≤ cn), to bound E[eλDn | Fn−1].
Then iterate for n − 1, n − 2, . . . , 1.



Remainder of proof (same as before)

We obtain

Eeλ(Xn−X0) ≤ exp

(
λ2

8

n∑
s=1

c2s

)
and so

Pr(Xn − X0 ≥ t) ≤ exp
(
− λt +

λ2

8

n∑
s=1

c2s

)
.

Minimizing the exponent gives λ⋆ =
4t∑n
s=1 c

2
s

, yielding

Pr(Xn − X0 ≥ t) ≤ exp
(
− 2t2∑n

s=1 c
2
s

)
.

The lower-tail bound follows by applying the same argument to
−Xn.



Next time

We will finish the description and analysis of the smarter UCB
(Upper Confidence Bound) algorithm which has been very
influential.


