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(Winter 2026)

Lecture 2: Concentration
Inequalities
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Hoeffding's inequality (bounded independent sums)

Theorem (Hoeffding)

Let Xi,..., X, be independent random variables with X; € [a;, bj]
almost surely. Let S, =" Xj and p=ES, =" EX;. Then
for every t > Q,

Pr(Sn—p=t) < eXp( - n2t2)

> i1(bi — aj)?
and 02
t
Pr(s—ns 0 < ool =g G sy)
So 02

Special case: if X; € [0,1] then Pr(S, — u > t) < exp(—2t2/n).



Proof (Chernoff bound + Hoeffding's lemma)

Step 1: Chernoff (exponential Markov). For any A > 0,

Pr(Sp—pu>1t)= Pr(e)‘(s"*“) > e’\t)

Pr(e’\(s"*“) > e)\t) < e Mt EeMSn—n) _ efAtHEe/\(X;f]EX,-).
i=1
Step 2: Hoeffding’s lemma. (We will prove it afterward.) If
Y € [a,b] a.s. and EY = 0, then for all A € R,

N2(b— a)2>
— =5 )
Apply to Y; = X; —EX; € [a,- —EX;, b — EX,‘] to get

EerY < exp(

20p. A2
EMNX—EX) < exp()\ (blg a;) )



Step 3: Combine and optimize ).

2 )
Pr(Sp—u>1t) < exp(—)\t+8;(b;—a;) )
Minimizing the exponent gives \* = 4 yielding
>lita(bi — ai)*
2t2
Pr(S,—u>1t) < — |-
Sz ) < ool )

The lower-tail bound follows by applying the same argument to
—(5n — ).



Hoeffding's lemma

Lemma (Hoeffding)
IfY € [a, b] almost surely and EY = 0, then for all X\ € R,

EeMY < exp </\2(138—a)2) .

First step of proof: Take log of both sides, equivalent to show
logEe*Y < \2(b—a)?/8

In what follows we will analyze the degree-2 Taylor expansion of
the lhs in A.



Hoeffding's lemma: setup (cumulant generating function)

Let

K()\) = logEe"Y (the cumulant generating function of Y).

We want to show

A(b — a)?
KO\ < (8‘3) for all \ € R.
Two easy facts:
E[Ye?]
_ _ 10) — _ _
K(0) =logl =0, K'(0) = E[ef] =EY =0.

So if we can bound K”(\) uniformly, we can integrate twice
(“2nd-order Taylor with remainder”).



Key identity: K”()\) is a variance under a tilted measure

Define the tilted expectation

AY
B = S
Differentiate: E[ye)Y
K/()\) — ]EF[eeAY]] = E)\[Y].

Differentiate again (quotient rule):
K"(A) = Ea[Y?] — (EA[Y])? = Vara(Y).

Thus, Hoeffding’s lemma reduces to bounding a variance.



Uniform bound: variance of a bounded variable

If Z € [a, b] almost surely, then for any probability measure,

)2
Var(z) < L=
4
Proof (one line): let m = (a+ b)/2. Then |Z — m| < (b—a)/2,
hence 5
(Z_m)2 < (b—43) )

Taking expectations gives E(Z — m)? < (b — a)?/4, and since
Var(Z) < E(Z — m)?, the claim follows.
Apply this with Z = Y under the tilted measure Py:

(b a)?
4

for all .

K"(\) = Vary(Y) <



Integrate twice (a rigorous “2nd-order Taylor bound")

Using K(0) = K'(0) =

K()\):/O K'(s ds—/ / K"(t dtds—/()\—t)K”(t)dt.

Now plug in the uniform bound K”(t) < (b — a)?/4:

K(A)S/OA(/\—t)(bjf)zdt:(b;a)z./\;:)‘z(b;a)z.

Exponentiating both sides yields



Analysis of NAIVE-EE (aka ETC, Explore-Then-Commit)

Recall: we have T rounds of interaction, k arms, and when we pull
arm i we receive reward r; ~ D;. For simplicity, we assume

ri € [0,1] always.

Suppose we pull each arm m times in the exploration phase. Then,
by Hoeffding's inequality, the sample mean

satisfies with probability at least 1 — §/K that

i — pil < \/2log(2K/5)/m.

By the union bound, this holds for all i € [K] with probability at
least 1 — 4.



Completing analysis

Under the high probability event that for all i € [K]

s — il < \/210g(2K/3)/m.

we can now bound the regret. Let u* = max u; be the true optimal
reward. Let [i = max fi; be the best sample reward. Then in each
of the T — Km exploitation rounds, our regret in expectation is at

most
€ :=2+/2log(2K/0)/m.
(Why?) In the first Km rounds we can lose at most Km reward. So
(total regret) < Km+ (T — Km)e.

Take m = T2/3, then we see the total regret is O(KT?/3).



Looking forward

NAIVE-EE (also called ETC, Explore-Then-Commit) is easy to
analyze but it's not very optimal. T2/3 scaling of regret.

We want to understand how combining learning and
decision-making can lead to improvements. Act more like an
intelligent person 7 This will lead to an improvement to regret
scaling as T1/2log!/2(T).

(Think: how many times do you touch a stove before learning?)

To analyze better strategies, we need to spend some time
learning/reviewing martingales (iterated betting games).



Motivation: “fair game” over time

We observe random information over time:
Xo, X1, Xo, ...

Think: wealth of a gambler after t rounds, or a running estimate
after seeing t samples.
Informal idea (fair game):
Given everything you know up to time t, your expected
wealth at time t + 1 is exactly your current wealth.

That idea is a martingale.



Filtration = “information revealed so far”

Let F; denote the information you have after observing the process
up to time t.

Concrete picture: F; is “everything you can compute from

X0y, Xe

Formally (but you can treat this as notation):

FoCFCoo

This increasing family (F;) is called a filtration.



Definition: martingale

A sequence (X;)¢>0 is a martingale w.r.t. (Fy) if:

1. X; is determined by time-t information (i.e. X; is
Fi-measurable),

2. E’Xt| < 00,

3. Fairness: for all t,
}E[Xt+1 |]:t] — Xt.

Equivalent form (martingale differences): define
Dt+1 = Xt+1 — Xt- Then

E[Dt+1 ’ Ft] == 0



Examples

1) Symmetric random walk. Let &;,&,... bei.id. with
P(¢ = +1) =P(& = —1) = 1/2, and set S; = >_;_; &. With
ft - 0-(517' "7€t)'

E[Sey1 | Ft] = St + E[§ev1 | Fi] = St

So (S¢) is a martingale.

2) “Conditional expectation process.” For any integrable
random variable Z, define

Xt = E[Z ’ Ft]

Then (X¢) is a martingale (“tower property”): E[Xe+1 | Ft] = X:.



Azuma-Hoeffding inequality (bounded differences)

Let (X:)7_, be a martingale w.r.t. (F;).
Assume bounded increments: for constants ci, ..., Cp,

|Xe — Xi—1] < ¢ almost surely for each t =1,...,n.

Then for all u > 0,

2

u
P(X, — Xo > < —_——
om0z ) < ez )

and similarly

2

u
P(| X, — Xg| > < 2 —_ .
(1% ol 2 u) < exp( 22?—1Ct2>



How to read Azuma-Hoeffding (intuition + special case)

Intuition: X, — Xp is a sum of martingale differences,

n

Xn—Xo =Y (Xe — Xe_1),

t=1
and each term is mean-zero given the past and bounded by ¢;.

Special case: if all steps are bounded by the same ¢ (i.e. ¢; = ¢),
then

2
P(|Xp — Xo| > u) < 26XP<—2nC2> :

So typical fluctuations are on the order of c/n.



Proof of Azuma-Hoeffding

Almost exactly the same as Hoeffding, if we are careful to use
definitions correctly.



Azuma-Hoeffding: Step 1 (Chernoff + tower property)
Let (X:)]_, be a martingale w.r.t. (F;) and set

DtZ:Xt_thl (t:]-)-'-an)7 SO X”_XOZZDt’
t=1

with E[D; | Ft—1] = 0. As before we start with Chernoff bound.
For any A > 0,

Pr(X,, — Xo 2 t) = Pr(eA(Xn—Xo) 2 e)\f) S e—>\t Ee,\(xn_xo).

Key difference vs. i.i.d.: we cannot factor the MGF as a product.
Instead we peel one step at a time using conditional expectation:

n n—1
A(Xn—Xo) — AD, .
Ee ) _ [ [exp (A; D5> exp (A; Ds) E[e \fn_l}]

Now apply Hoeffding's lemma conditionally to D, given F,_1
(using E[D,, | F,—1] = 0 and |D,| < c,), to bound E[e*Pr | F,_4].
Then iterate for n—1,n—2,...,1.

=E




Remainder of proof (same as before)

We obtain

and so
N2 &
Pr(Xp, —Xo>t) < exp(—)\t+8§_1cs).

Minimizing the exponent gives \* = yielding

at
Dem1 e
Pr(X,— Xo>1t) < e < 2" )
r(Xo—Xo>t) < exp( — =

! D1 €2

The lower-tail bound follows by applying the same argument to
—Xp.



Next time

We will finish the description and analysis of the smarter UCB
(Upper Confidence Bound) algorithm which has been very
influential.



