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Azuma–Hoeffding inequality (bounded differences)

Let (Xt)
n
t=0 be a martingale w.r.t. (Ft).

Assume bounded increments: for constants c1, . . . , cn,

|Xt − Xt−1| ≤ ct almost surely for each t = 1, . . . , n.

Then for all u > 0,

P(Xn − X0 ≥ u) ≤ exp
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and similarly
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.



Application: concentration of regret

▶ Today we will see how to use Azuma-Hoeffding to analyze the
UCB algorithm.

▶ RMK: design of the algorithm is tightly connected with the
analysis!

▶ We will start with a bound on expected regret and then later
show a high probability bound.



Regret decomposition (for later)

Fix a policy for the bandit. Define (random) regret

RT :=
T∑
t=1

(
µ⋆ − r(t)

)
, µ⋆ = max

i
µi , µi := E[r(t) | i(t) = i ].

Let Ft be the history up to time t (arms and rewards up to time t).

Remark: we can decompose RT as “predictable part + noise”:

RT =
T∑
t=1

(
µ⋆ − µi(t)

)
−

T∑
t=1

(
r(t)− µi(t)

)
.

The first term is called the pseudoregret. Unlike regret, it is
nonnegative (why?) In bandits textbooks, it is often nice to study
the pseudoregret in place of the regret. Note that they have the
same expectation.



UCB algorithm (Upper Confidence Bound / UCB1)
We maintain for each arm i ∈ [K ]:

Ni (t) = #{s ≤ t − 1 : i(s) = i}

µ̂i (t) =
1

Ni (t)

∑
s≤t−1: i(s)=i

r(s) (when Ni (t) ≥ 1).

Algorithm (for t = 1, . . . ,T ):

1. Initialization: pull each arm once (for t = 1, . . . ,K ).

2. For t > K , compute indices

UCBi (t) = µ̂i (t) +

√
2 log t

Ni (t)
.

3. Choose i(t) ∈ argmaxi UCBi (t), observe reward r(t) ∈ [0, 1],
update.

Optimism-under-uncertainty: sample mean + confidence radius.



Azuma-Hoeffding confidence bounds for adaptively
sampled means

Let Ft be the history up to time t. The choice i(t) is
Ft−1-measurable, and rewards satisfy

E[r(t) | i(t) = i ] =: µi , r(t) ∈ [0, 1].

For a fixed arm i , define martingale differences

X
(i)
t := 1{i(t) = i}

(
r(t)− µi

)
.

Then E[X (i)
t | Ft−1] = 0 and |X (i)

t | ≤ 1 a.s. So M
(i)
t :=

∑t
s=1 X

(i)
s

is a martingale with bounded increments.

Azuma-Hoeffding ⇒ for any δ ∈ (0, 1) and any time t,

Pr
(
|µ̂i (t)− µi | ≥

√
2 log(t)
Ni (t)

)
≤ 2/t,

interpreting µ̂i (t) as the mean of the Ni (t) observed rewards from
arm i .



Regret decomposition
Let µ⋆ = maxi µi and define expected (pseudo-)regret

R̄T := Tµ⋆ − E
[ T∑
t=1

r(t)
]
=

K∑
i=1

(µ⋆ − µi )E[Ni (T + 1)].

Good and bad arms. Split arms into:

S := {i : ∆i := µ⋆ − µi ≤ ε}, L := {i : ∆i > ε},

for a threshold ε > 0 to be chosen later.

Then

R̄T =
∑
i∈S

∆i E[Ni (T + 1)] +
∑
i∈L

∆i E[Ni (T + 1)] (1)

≤ εT +
∑
i∈L

∆i E[Ni (T + 1)]. (2)

So it remains to control E[Ni (T + 1)] for arms with gap > ε.



Bounding pulls of a suboptimal arm
Fix a suboptimal arm i with gap ∆i := µ⋆ − µi > 0.

On the good event that the UCB confidence bounds are valid for
all arms at time t, if arm i is chosen at time t then

µ̂i (t) +

√
2 log t

Ni (t)
≥ µ̂i⋆(t) +

√
2 log t

Ni⋆(t)
.

Using the confidence bounds µ̂i (t) ≤ µi +
√

2 log t
Ni (t)

and

µ̂i⋆(t) ≥ µ⋆ −
√

2 log t
Ni⋆ (t)

, we get

µi + 2

√
2 log t

Ni (t)
≥ µ⋆ ⇒ 2

√
2 log t

Ni (t)
≥ ∆i .

Hence, whenever i is pulled at time t on the good event,

Ni (t) ≤ 8 log t

∆2
i

⇒ Ni (T + 1) ≤ 1 +
8 logT

∆2
i

.



Bad event details

At step t we have a probability of K/t of having a bad event (one
of the estimates of the arms is off). By linearity of expectation, the
expected total contribution from bad events to regret is

T∑
t=1

K/t ≲ K logT

so ignoring O(K logT ) contribution to regret (which is lower-order
compared to final regret bound), we can ignore the bad events.

Remark: even more precisely, the expected number of pulls of any
particular arm i which occured due to “bad estimates” is
O(logT ). (Check yourself.)



Gap-independent regret bound via ε-splitting
Regret:

R̄T =
∑

i :∆i>0

∆i E[Ni (T + 1)].

Fix ε > 0 and split suboptimal arms into

S = {i : ∆i ≤ ε}, L = {i : ∆i > ε}.

Small gaps: since
∑

i∈S Ni (T + 1) ≤ T ,∑
i∈S

∆i E[Ni (T + 1)] ≤ εE
[∑
i∈S

Ni (T + 1)
]

≤ εT .

Large gaps: using the pull bound E[Ni (T + 1)] ≲ 1 + 8 logT
∆2

i
,∑

i∈L
∆i E[Ni (T+1)] ≲

∑
i∈L

∆i + 8 logT
∑
i∈L

1

∆i
≤ K +

8K logT

ε
,

since ∆i > ε on L. Therefore

R̄T ≲ εT +
8K logT

ε
+ K .



Optimize ϵ

We showed

R̄T ≲ εT +
8K logT

ε
+ K .

Optimize by ε =
√

8K logT
T to get

R̄T = O
(√

K T logT
)
.

In particular, for fixed K this is O(
√
T logT ).

NOTE: we saved because we did not waste time pulling bad arms !
Makes a lot of sense. We also assumed K logT ≪ T to simplify
the bound (if number of arms is similar to T , it becomes hopeless
to find the best one.)



Extra slides

Some additional aspects of this problem related to the
pseudoregret are commonly disussed in the literature.



Gap-dependent bound on expected (pseudo)regret

Suppose all gaps ∆i > 0. Then we can take ε → 0 in our
argument before and find that for expected regret

R̄T = ERT =
∑

i :∆i>0

∆i E[Ni (T + 1)].

Large gaps bound: using the pull bound

E[Ni (T + 1)] ≲ 1 +
8 logT

∆2
i

,

∑
i

∆i E[Ni (T + 1)] ≲
∑
i

∆i + 8 logT
∑
i

1

∆i

we can write

R̄T ≲ 8 log(T )
∑
i

1

∆i
+ K .

So, for fixed ∆i , expected regret grows logarithmically as T → ∞.



Regret vs. pseudo-regret (Azuma-Hoeffding)

Recall the (random) regret and pseudo-regret:

RT :=
T∑
t=1

(
µ⋆ − r(t)

)
, R̃T :=

T∑
t=1

(
µ⋆ − µi(t)

)
,

where µi := E[r(t) | i(t) = i ] and µ⋆ = maxi µi .

Their difference is the martingale noise term:

RT − R̃T =
T∑
t=1

(
µi(t) − r(t)

)
= −

T∑
t=1

(
r(t)− µi(t)

)
=: −MT .

Let Ft be the history up to time t. Then

E
[
r(t)− µi(t) | Ft−1

]
= 0, |r(t)− µi(t)| ≤ 1,

so (Mt)t≤T is a martingale with bounded increments.



regret vs pseudo-regret

RT − R̃T =
T∑
t=1

(
µi(t) − r(t)

)
= −

T∑
t=1

(
r(t)− µi(t)

)
=: −MT .

is a martingale with bounded increments.
Azuma-Hoeffding: for any δ ∈ (0, 1),

Pr
(
|RT − R̃T | ≥ x

)
= Pr

(
|MT | ≥ x

)
≤ 2 exp

(
− x2

2T

)
.

Setting x =
√
2T log(2/δ) gives the high-probability bound

|RT − R̃T | ≤
√
2T log(2/δ) with prob. ≥ 1− δ.

In particular, E|RT − R̃T | ≤
√
2T log 2 = O(

√
T ).



Summary of gap-dependent theory

▶ Gap-dependent bound: fix gaps ∆i > 0 and consider large T
behavior.

▶ Expected regret = expected pseudoregret =
O(

∑
i log(T )/∆i ).

▶ So by Markov, with 99% probability pseudoregret is
O(

∑
i log(T )/∆i ). Azuma-Hoeffding: true within ±

√
T for

regret.

▶ Gap-independent bound: regret and pseudoregret whp is
O(

√
KT log(T )).

▶ High-probability O(logT ) statement is not possible for
realized regret. (Why?)

√
T is a fundamental limit.



Next time

▶ Gap-independent bound: regret and pseudoregret whp is
O(

√
KT log(T )).

▶ How close is this to optimal?


