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Reference

Up to some minor details, we will follow the proof in Tor Lattimore
and Csaba Szepesvari’s Bandits book, Chapters 13-15.



Goal: minimax lower bound for K -armed stochastic bandits
Setting: K arms, T rounds. At time t algorithm chooses arm
i(t) ∈ [K ] and observes reward r(t) ∈ [0, 1] with

E[r(t) | i(t) = i ] = µi

Define pseudo-regret

R̃T :=
T∑
t=1

(
µ⋆ − µi(t)

)
, µ⋆ := max

i
µi ,

(and similarly regret with realized rewards).

Theorem (minimax rate). There exists a universal constant
c > 0 such that for any algorithm/policy π,

sup
instances on [0,1]

Eπ[R̃T ] ≥ c
√
KT .

(whereas UCB1 showed an upper bound of O(
√

KT log(T ))).



Sidenote: minimax upper bound
The most well-known algorithm achieving the “minimax” upper
bound O(

√
KT ) is called “MOSS”. Minimax here refers to the fact

that:
min

policies
max

instances on [0,1]
E[R̃T ] = Θ(

√
KT )

It shaves the
√
log(T ) factor from UCB1.



Key mathematical concept: KL Divergence

KL divergence is an important measure of distance between
probability distributions which is used all the time in ML, RL, and
many other areas. It is a concept core to information theory and
statistics.

Although it is not required to deeply understand the KL divergence
to go through the proof, it helps when a lot to understand its
intuitive relation to Shannon’s source coding theorem (i.e.
mathematics of optimal compression for i.i.d. samples).



Motivation: Shannon entropy and optimal compression

Let X be a discrete random variable on alphabet X with
distribution P.

Shannon entropy (bits):

H2(P) :=
∑
x∈X

P(x) log2
1

P(x)
.

Source coding theorem (informal statement). For i.i.d. data
X1, . . . ,Xn ∼ P:

▶ There exist lossless codes whose expected per-symbol length
approaches H2(P) as n → ∞. (see “Huffman code”)

▶ No lossless code can achieve expected per-symbol length
below H2(P) in the limit.

So H2(P) is the fundamental limit for compression: the best
achievable average bits per symbol.



Cross-entropy and the definition of KL divergence
Suppose the data are truly X ∼ P, but we encode as if X ∼ Q.

The cross-entropy (bits) is

H2(P,Q) :=
∑
x

P(x) log2
1

Q(x)
.

Heuristically, this is the average code length if we use a code
optimized for Q.

Compare to the optimal limit H2(P). Their difference is

H2(P,Q)− H2(P) =
∑
x

P(x) log2
P(x)

Q(x)
=: DKL,2(P∥Q).

Using natural logs gives the standard (nats) definition:

DKL(P∥Q) :=
∑
x

P(x) log
P(x)

Q(x)
.

Interpretation: KL is the redundancy (extra bits/nats per symbol)
from coding P-data with a Q-model.



Nonnegativity of KL
Assume P ≪ Q and write p(x), q(x) for pmfs. Define the
likelihood ratio

L(x) :=
p(x)

q(x)
.

Then (a useful identity)

DKL(P∥Q) =
∑
x

q(x)
p(x)

q(x)
log

p(x)

q(x)
= EX∼Q

[
f (L(X ))

]
,

where f (u) = u log u.

Key facts: f is convex on (0,∞) since f ′′(u) = 1/u > 0, and

EQ [L(X )] =
∑
x

q(x)
p(x)

q(x)
=

∑
x

p(x) = 1.

By Jensen’s inequality (convex f ),

DKL(P∥Q) = EQ [f (L)] ≥ f (EQ [L]) = f (1) = 0.

Equality holds iff L(X ) is a.s. constant under Q, i.e. P = Q.



Chain rule for KL: statement

Let (X ,Y ) be discrete random variables. Write PXY and QXY for
two joint distributions on X × Y, with marginals PX ,QX and
conditionals PY |X ,QY |X .

Theorem (chain rule). Assuming PXY ≪ QXY ,

DKL(PXY ∥QXY ) = DKL(PX∥QX )+EX∼PX
DKL

(
PY |X (·|X ) ∥ QY |X (·|X )

)
Expanded form:

DKL(PXY ∥QXY ) =
∑
x

P(x) log
P(x)

Q(x)
+
∑
x

P(x)
∑
y

P(y |x) log P(y |x)
Q(y |x)

.



Chain rule for KL: proof (discrete)
Start from the definition and factor the joint laws:

DKL(PXY ∥QXY ) =
∑
x ,y

P(x , y) log
P(x , y)

Q(x , y)
=

∑
x ,y

P(x , y) log
P(x)P(y |x)
Q(x)Q(y |x)

.

Split the logarithm:

=
∑
x ,y

P(x , y) log
P(x)

Q(x)
+
∑
x ,y

P(x , y) log
P(y |x)
Q(y |x)

.

First term:∑
x ,y

P(x , y) log
P(x)

Q(x)
=

∑
x

P(x) log
P(x)

Q(x)
= DKL(PX∥QX ).

Second term:∑
x ,y

P(x , y) log
P(y |x)
Q(y |x)

= EX∼PX

[
DKL(PY |X∥QY |X )

]
.



Chain rule: coding intuition

Coding a pair (X ,Y ) with model QXY has redundancy
DKL(PXY ∥QXY ).

Coding in two stages (first X using QX , then Y |X using QY |X )
has redundancy

DKL(PX∥QX ) + EX∼PX

[
DKL(PY |X∥QY |X )

]
,

which must equal the joint redundancy — this is exactly the chain
rule.



KL and a testing inequality

Now we understand

DKL(P∥Q) = EP

[
log

dP

dQ

]
so we can start to apply it.

Bretagnolle–Huber (proof left to HW). For any event A and
any P,Q,

P(A) + Q(Ac) ≥ 1

2
exp

(
− DKL(P∥Q)

)
.

Interpretation: if DKL(P∥Q) is small, no test can separate P vs Q
with small error.

We will apply this with P = “rollout under instance 0” and Q =
“rollout under instance j”.



Key lemma: chain rule for KL under adaptive sampling

Let ν = (D1, . . . ,DK ) and ν ′ = (D ′
1, . . . ,D

′
K ) be two bandit

instances. Let Pν and Pν′ be the induced distributions on the full
transcript FT = (i(1), r(1), . . . , i(T ), r(T )) under a fixed
algorithm.

Lemma (bandit KL decomposition).

DKL(Pν∥Pν′) =
K∑
i=1

Eν [Ni (T + 1)] DKL(Di∥D ′
i ),

where Ni (t) = #{s ≤ t − 1 : i(s) = i}.

Proof: direct application of the chain rule for KL.



Hard instances: one slightly-better arm

Fix ε ∈ (0, 1/4].

Define instance ν0: all arms are Ber(1/2).

For each j ∈ [K ], define instance ν j :

Dj = Ber(1/2 + ε), Di = Ber(1/2) (i ̸= j).

Then µ⋆ = 1/2 + ε and the unique best arm is j .

Regret on ν j . Each time we do not play j , we lose gap ε, so

Eν j [R̃T ] = εEν j
[
T − Nj(T + 1)

]
.

So it suffices to show that for some j the algorithm fails to pull
arm j often.



Warmup: Ω(
√
T ) bound

Because

DKL(Ber(1/2)∥Ber(1/2 + ϵ)) = DKL(Ber(1/2)∥Ber(1/2− ϵ))

and because it is analytic, we know that

DKL(Ber(1/2)∥Ber(1/2 + ϵ)) ≲ ϵ2

for small ϵ. (Why?)
Consider a bandit with two arms labeled 1 and 2, and consider
reward distributions ν1 and ν2 from before. By the bandit KL
decomposition and the fact that no arm is pulled more than T
times, we have

DKL(Pν1 ,Pν2) ≲ T ϵ2.

If ϵ ≪ 1/
√
T , then by Bretagnolle-Huber we either pull arm 1 a lot

under ν2 or pull arm 2 a lot under ν2, so we experience Ω(ϵ) regret.



Next: Ω(
√
KT ) bound

Our lower bound in the previous slide clearly does not improve as
the number of arms K increases. However, our best upper bound
is O(

√
KT ). It turns out we can improve the lower bound with a

more sophisticated argument.



Pick an arm j that is rarely sampled under ν0

Under ν0, the algorithm still makes exactly T pulls total:

K∑
i=1

Ni (T + 1) = T ⇒
K∑
i=1

Eν0 [Ni (T + 1)] = T .

Therefore, there exists some j ∈ [K ] with

Eν0 [Nj(T + 1)] ≤ T

K
.

Define the event

A :=

{
Nj(T + 1) >

4T

K

}
.

By Markov’s inequality,

Pr
ν0
(A) ≤

Eν0 [Nj(T + 1)]

4T/K
≤ 1

4
.

So, under ν0, with probability at least 3/4 the algorithm does not
pull arm j more than 4T/K times.



Bound distinguishability: DKL(Pν0∥Pν j)

Let P0 and Pj denote the transcript laws under ν0 and ν j .

By the KL decomposition lemma (previous slide) and since only
arm j differs,

DKL(P0∥Pj) = Eν0 [Nj(T + 1)] · DKL

(
Ber(1/2) ∥ Ber(1/2 + ε)

)
.

For ε ≤ 1/4, a crude bound for Bernoulli KL is

DKL

(
Ber(1/2) ∥ Ber(1/2 + ε)

)
≤ 8ε2.

Therefore, using Eν0 [Nj(T + 1)] ≤ T/K ,

DKL(P0∥Pj) ≤ 8ε2
T

K
.



Apply Bretagnolle–Huber to go to ν j

Recall A = {Nj(T + 1) > 4T/K} and Prν0(A) ≤ 1/4.

Apply Bretagnolle–Huber with P = P0, Q = Pj :

Pr
ν0
(A) + Pr

ν j
(Ac) ≥ 1

2
exp

(
− DKL(P0∥Pj)

)
.

Hence

Pr
ν j
(Ac) ≥ 1

2
exp

(
− 8ε2

T

K

)
− 1

4
.

Choose ε :=
√

K
32T so that 8ε2TK = 1

4 . Then

Pr
ν j

(
Nj(T + 1) ≤ 4T

K

)
= Pr

ν j
(Ac) ≥ 1

2
e−1/4 − 1

4
≥ c0

for a universal constant c0 > 0.



Conclude Ω(
√
KT )

On the event Ac = {Nj(T + 1) ≤ 4T/K},

T − Nj(T + 1) ≥ T
(
1− 4

K

)
≥ T

2
(for K ≥ 8).

Therefore,

Eν j [R̃T ] = εEν j [T − Nj(T + 1)] ≥ ε · T
2
· Pr
ν j
(Ac) ≥ c1 εT .

With ε =
√

K
32T , this gives

Eν j [R̃T ] ≥ c
√
KT .

Remarks: (i) constants and the K ≥ 8 condition can be handled cleanly
by casework; (ii) since |RT − R̃T | = O(

√
T ) by Azuma, the same

minimax rate holds for realized regret.


