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Reference

Up to some minor details, we will follow the proof in Tor Lattimore
and Csaba Szepesvari's Bandits book, Chapters 13-15.



Goal: minimax lower bound for K-armed stochastic bandits

Setting: K arms, T rounds. At time t algorithm chooses arm
i(t) € [K] and observes reward r(t) € [0, 1] with

E[r(t) [ i(t) = 1] = pi

Define pseudo-regret

T

Rr=) (W —mi),  p"=maxu;,
t=1

(and similarly regret with realized rewards).

Theorem (minimax rate). There exists a universal constant
¢ > 0 such that for any algorithm/policy ,

sup E-[R7] > cVKT.

instances on [0,1]

(whereas UCB1 showed an upper bound of O(1/KT log(T))).



Sidenote: minimax upper bound
The most well-known algorithm achieving the “minimax” upper
bound O(VKT) is called “MOSS". Minimax here refers to the fact
that:
min max E[R7] = ©(VKT)

policies instances on [0,1]

It shaves the \/log(T) factor from UCBL.

9.1 The MOSS Algorithm

Algorithm 7 shows the pseudocode of MOSS, which is again an instance of the
UCB family. The main novelty is that the confidence level is chosen based on the
number of plays of the individual arms, as well as n and k.

1: Input n and k&
2: Choose each arm once
3: Subsequently choose

_ oo 4 + n
A; = argmax; [, (¢ 1)+\/Ti(t*1)10g (kTi(t*1)>’

where log™ (z) = logmax {1,z} .

Algorithm 7: MOSS.



Key mathematical concept: KL Divergence

KL divergence is an important measure of distance between
probability distributions which is used all the time in ML, RL, and
many other areas. It is a concept core to information theory and
statistics.

Although it is not required to deeply understand the KL divergence
to go through the proof, it helps when a lot to understand its
intuitive relation to Shannon's source coding theorem (i.e.
mathematics of optimal compression for i.i.d. samples).



Motivation: Shannon entropy and optimal compression

Let X be a discrete random variable on alphabet X’ with
distribution P.

Shannon entropy (bits):

ZP Iog2P )

xeX

Source coding theorem (informal statement). For i.i.d. data
X1y, Xnp~ P

P> There exist lossless codes whose expected per-symbol length
approaches Hp(P) as n — co. (see “Huffman code”)

P> No lossless code can achieve expected per-symbol length
below Hy(P) in the limit.

So Hy(P) is the fundamental limit for compression: the best
achievable average bits per symbol.



Cross-entropy and the definition of KL divergence
Suppose the data are truly X ~ P, but we encode as if X ~ Q.

The cross-entropy (bits) is

ZP Iog2Q )’

Heuristically, this is the average code length if we use a code
optimized for Q.

Compare to the optimal limit Hy(P). Their difference is

FolP. @)~ HilP) = 3 Pl ; — Di1a(PIQ).

Using natural logs gives the standard (nats) definition:
P(x)

Dx1,(P||Q) := P(x)lo .

LPIQ) = 37 Px)log 55

Interpretation: KL is the redundancy (extra bits/nats per symbol)
from coding P-data with a @-model.




Nonnegativity of KL

Assume P < @ and write p(x), g(x) for pmfs. Define the
likelihood ratio

Then (a useful identity)

D (PIQ@) = 3 a() X% 10g PY) _ iy o[ £(L(X)].

where f(u) = ulogu.
Key facts: f is convex on (0,0) since f’(u) = 1/u > 0, and

EolL()] =Y a()2) =3 p = 1.

- qlx) =

By Jensen's inequality (convex f),
Dk (P||Q) = Eqlf(L)] = f(Eq[L]) =f(1) =0.
Equality holds iff L(X) is a.s. constant under Q, i.e. P = Q.



Chain rule for KL: statement

Let (X, Y) be discrete random variables. Write Pxy and Qxy for
two joint distributions on X' x Y, with marginals Px, @x and
conditionals PY|X7 Qy‘x.

Theorem (chain rule). Assuming Pxy < Qxy,

Dk (Pxy || @xy) = Drr(Px||@x)+Ex~py DkL(Pyx(:|X) || Qyix(-|X))

Expanded form:

DxL(Pxyl|lQxy) = ZP P(X —i—ZP ZP(y!x Q( ’]x;'




Chain rule for KL: proof (discrete)

Start from the definition and factor the joint laws:

DxL(Pxy||Qxy) = ZP x,y) Iog Zp X, y) log =) CWP) P(x)P(y|x)

Q) Q(yx)
Split the logarithm:
= Z P(x,y)log ggg - Z P(x,y)log gi};’ﬁ
First term:
5 Py log g = - P)log gy = Dic(Px | Qx).
X,y X

Second term:

5 Plc.y) o8 ) = Exvr [D1c(Prix@yix)]




Chain rule: coding intuition

Coding a pair (X, Y) with model Qxy has redundancy
Dx1(Pxy || @xy)-

Coding in two stages (first X using Qx, then Y|X using Qy/x)
has redundancy

Dxr.(Px || Q@x) + Ex~py [Dkr(Py|x | Qyix)] ;

which must equal the joint redundancy — this is exactly the chain
rule.



KL and a testing inequality

Now we understand
dP}

so we can start to apply it.

Bretagnolle—Huber (proof left to HW). For any event A and
any P,Q,

Interpretation: if Dkp,(P||Q) is small, no test can separate P vs Q@
with small error.

We will apply this with P = “rollout under instance 0" and Q =
“rollout under instance j".



Key lemma: chain rule for KL under adaptive sampling

Let v = (Dy,...,Dk) and v/ = (Dj, ..., D)) be two bandit
instances. Let P, and P,/ be the induced distributions on the full
transcript F1 = (i(1), r(1),...,i(T),r(T)) under a fixed
algorithm.

Lemma (bandit KL decomposition).
K
Dxu(Py|P) = Y Eu[Ni(T +1)] Dxr(Di]| D)),
i=1

where Nj(t) = #{s<t—1: i(s)=1i}.

Proof: direct application of the chain rule for KL.



Hard instances: one slightly-better arm

Fix e € (0,1/4].
Define instance v%: all arms are Ber(1/2).
For each j € [K], define instance 1/:
Dj = Ber(1/2 +¢), D; = Ber(1/2) (i #J).
Then p* = 1/2 + ¢ and the unique best arm is .
Regret on 4. Each time we do not play j, we lose gap ¢, so
E,[Rr] =B, [T — N(T +1)].

So it suffices to show that for some j the algorithm fails to pull
arm j often.



Warmup: Q(+v/T) bound
Because
Dk (Ber(1/2)||Ber(1/2 + €)) = Dxi(Ber(1/2)||Ber(1/2 — €))
and because it is analytic, we know that
Dxi(Ber(1/2)[|Ber(1/2 + €)) < ¢

for small e. (Why?)
Consider a bandit with two arms labeled 1 and 2, and consider
reward distributions v and ©? from before. By the bandit KL
decomposition and the fact that no arm is pulled more than T
times, we have

Dki(P,, P2) < Té2.

If € < 1/+/T, then by Bretagnolle-Huber we either pull arm 1 a lot
under v2 or pull arm 2 a lot under v, so we experience (¢) regret.



Next: Q(+/'KT) bound

Our lower bound in the previous slide clearly does not improve as
the number of arms K increases. However, our best upper bound
is O(VKT). It turns out we can improve the lower bound with a
more sophisticated argument.



Pick an arm j that is rarely sampled under 1/°
Under 19, the algorithm still makes exactly T pulls total:

K K

SN(T+1)=T = D EpN(T+1)]=T.
i=1 i=1

Therefore, there exists some j € [K] with
-
Eo[N(T+1)] < —.
K
Define the event
AT

By Markov's inequality,

Eo[N;(T +1)] 1
A < Tk S

So, under 19, with probability at least 3/4 the algorithm does not
pull arm j more than 4T /K times.



Bound distinguishability: Dy, (P,o||P.)

Let Py and P; denote the transcript laws under v° and 1/.

By the KL decomposition lemma (previous slide) and since only
arm j differs,

DKL(P()HPJ') = EVO[NJ'(T + 1)] . DKL(Ber(l/Z) H Ber(1/2 + 6))
For e <1/4, a crude bound for Bernoulli KL is
Di1(Ber(1/2) || Ber(1/2+¢)) < 8%

Therefore, using Eo[N;(T +1)] < T/K,



Apply Bretagnolle-Huber to go to 1/

Recall A= {N;(T +1) > 4T /K} and Pr,(A) < 1/4.
Apply Bretagnolle-Huber with P = Py, Q = P;:

1
Pr(A) + Pr(A) > S exp( — Di(PollPy).
Hence 1 T 1
c > _ _ 27 — —.
F:Jr(A) > 2e><p( 8¢ K) 2

_ | K 2T _ 1
Choose ¢ := 357 SO that 8¢ =1 Then

AT 1 1
Pr(Nj(T+ 1)< > =Pr(A°) > Ze V-2 > g
1Z K 12 2

for a universal constant ¢y > 0.



Conclude Q(VKT)

On the event A€ = {N;(T +1) <4T/K},

4 T
T-N(T+1) = T(1-2) = & (for K =8).

K
Therefore,
o T c
EVJ[RT] = e’;‘EV,‘[T— Nj(T+ 1)] > €~ 5 . Pr(A ) > ceT.
V)
. o K L
With € = 4/ 357, this gives

E[RT] > cVKT.

Remarks: (i) constants and the K > 8 condition can be handled cleanly
by casework; (ii) since |[RT — Rr| = O(/T) by Azuma, the same
minimax rate holds for realized regret.



