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Reference

Up to some minor details, we will follow Tor Lattimore and Csaba
Szepesvari’s Bandits book, Chapters 35-36.



A simulation



Beyond UCB1: The Bayesian Perspective

▶ Recall UCB1: Uses an Upper Confidence Bound (Optimism
in the face of uncertainty).

▶ Bayesian Setting: We treat the unknown distribution
parameters as random variables.

▶ For simplicity: today, we focus on a simple Bayesian setting
where arm rewards are 0/1 valued. (But generalization is
easy.)

▶ Notation:
▶ k arms with distributions D1, . . . ,Dk .
▶ Bernoulli rewards: r(t) ∼ Bernoulli(µj) where µj is unknown.
▶ Arm chosen at time t: i(t) ∈ {1, . . . , k}.
▶ Reward at time t: r(t) ∈ {0, 1}.



Frequentist vs Bayesian statistics

▶ Frequentist statistics: the true means µ1, . . . , µk are fixed
and unknown. Randomness in our experiment is only due to
randomness of our rewards (and policy, if randomized).
▶ To measure uncertainty, build “confidence intervals”: e.g. a

random interval [Li ,Ui ] such that with 95% probability over
the randomness of the interval, µi ∈ [Li ,Ui ].

▶ Bayesian statistics: additionally models µ1, . . . , µk as random
variables sampled from a “prior” distribution.
▶ Using Bayes rule, we can update the prior to a posterior

distribution after seeing the data. For observation X and
unknown parameter θ,

P(θ|X ) ∝ P(X |θ)P(θ)

(posterior ∝ likelihood × prior).
▶ Posterior = our beliefs, including our uncertainty.
▶ Sample from prior to understand possible θ given the data.



The Prior: Beta Distribution
As a Bayesian, how to pick a prior distribution? In real life: often
determined by computational considerations.

For the Bernoulli distribution, the Beta Distribution is the
“conjugate prior” (so it will be very easy to calculate with).

Probability Density Function (PDF)

For x ∈ [0, 1], and parameters α, β > 0:

f (x ;α, β) =
xα−1(1− x)β−1

B(α, β)

▶ B(α, β) is an (explicit) normalizing constant so
∫
fdx = 1.

▶ α− 1: ”Pseudo-counts” of successes (1s).

▶ β − 1: ”Pseudo-counts” of failures (0s).

▶ Flat Prior: Beta(1, 1) is Uniform(0, 1).

▶ Jeffreys Prior: Beta(0.5, 0.5) (non-informative for Bernoulli).



Key properties of Beta

Mean of Z ∼ Beta(α, β):

E[Z ] =
α

α+ β
.

Conjugacy with Bernoulli: suppose Z ∼ Beta(α, β) and
X ∼ Ber(Z ). Then

Z | X ∼ Beta(α+ X , β + (1− X )).

(Similarly extends to Bin(n,Z ).) Why? Using Bayes rule

p(Z = z | X ) ∝ p(X | Z = z)p(Z = z) ∝ zx(1−z)1−xzα−1(1−z)β−1

which is exactly the density of Beta(α+ X , β + (1− X )).



Posterior Updates

In the Bayesian setting, we maintain a belief (posterior) for each
arm j , and update it based on our experiences.

The Update Rule: If we choose arm i(t) and observe reward
r(t):

1. If r(t) = 1: αi(t) ← αi(t) + 1

2. If r(t) = 0: βi(t) ← βi(t) + 1

The posterior distribution for µj at time t is:

πj ,t = Beta(αj ,0 + Sj ,t , βj ,0 + Fj ,t)

where Sj ,t and Fj ,t are the number of successes and failures for
arm j up to time t.



Thompson Sampling (TS)

Thompson Sampling (or Posterior Sampling) implements
Probability Matching.
For t = 1, 2, . . . ,T :

1. Sample: For each arm j ∈ {1, . . . , k}, sample:

µ̂j(t) ∼ πj ,t

2. Act: Choose arm i(t) = argmaxj µ̂j(t).

3. Observe: Get reward r(t) ∼ Bernoulli(µi(t)).

4. Update: Update πi(t),t+1 using r(t). (I.e., increment either
αi(t) or βi(t) appropriately.)



Bayesian Regret Definition

Unlike frequentist regret (which is specific to fixed parameters θ),
Bayesian Regret (BR) averages over the prior ν.

BR(T ) = Eθ∼ν

[
E

[
T∑
t=1

(µ∗ − µi(t))

]]
▶ µ∗ = maxj µj .

▶ The inner expectation is over the randomness of rewards and
the algorithm.

▶ The outer expectation is over the prior distributions
π1,0 . . . πk,0.



Regret Guarantees (Lattimore & Szepesvári)
For k-armed bandits with rewards in [0, 1], Thompson Sampling
satisfies a Bayesian regret bound:

Theorem (Bayesian Regret of TS)

For any prior ν, the Bayesian regret of Thompson Sampling after
T rounds is bounded by:

BR(T ) ≤
√

1

2
kT logT

Why is this important?
▶ It matches the lower bound of O(

√
kT ) up to a logarithmic

factor.
▶ Despite having a similar guarantee, we saw experimentally

that TS can outperform UCB1. Nice to know that this does
not require throwing away mathematical guarantees.

▶ Surprising trick to proof: analysis argues that Thompson
sampling is “optimistic” similar to UCB1.



The Core of the Proof: Probability Matching

Let Ft−1 be the history (filtration) up to time t − 1. Let i∗ be the
index of the true optimal arm, i∗ = argmaxjµj .

The Probability Matching Property

Under Thompson Sampling, the conditional distribution of the
chosen arm i(t) is the same as the conditional distribution of the
optimal arm i∗:

P(i(t) = j | Ft−1) = P(i∗ = j | Ft−1)

(Why? symmetry/Nishimori identity)
By the same symmetry principle, we have

E[µi∗ | Ft−1] = E[µ̂i(t) | Ft−1]

where µ̂i(t) is the sample drawn by the algorithm.



Aside: probability matching in psychology

“In this situation S is asked to predict on each of a series of trials
whether some designated event, e.g., the flash of a light, will
occur; this event, the analogue of the US (Unconditioned
Stimulus) in a conditioning experiment, is presented in accordance
with a predetermined schedule, usually random with some fixed
probability. Several recent investigators (3, 5) have noted that S
tends to match his response rate to the rate of occurrence of the
predicted event so that if the probability of the latter is, say, .75,
the mean response curve for a group of Ss tends over a series of
trials toward an apparently stable final level at which the event is
predicted on approximately 75% of the trials. This behavior has
seemed puzzling to most investigators since it does not maximize
the proportion of successful predictions...”

(Estes-Straughan, “Analysis of a verbal conditioning situation in terms of
statistical learning theory”, Journal of Experimental Psychology ’54)



Step 1: Regret Decomposition

We can decompose the instantaneous Bayesian regret r(t) as
follows:

E[r(t) | Ft−1] = E[µi∗ − µi(t) | Ft−1]

Using the Probability Matching property:

E[r(t) | Ft−1] = E[ µ̂i(t) − µi(t)︸ ︷︷ ︸
Sampled vs. True Mean

| Ft−1]

Insight: The regret is determined by how much our sample (µ̂i(t))
deviates from the true mean (µi(t)) of the arm we actually pulled.



Step 2: Introducing a Confidence Bound

To bound E[µ̂i(t) − µi(t) | Ft−1], we introduce an Upper
Confidence Bound (UCB) Uj(t) for each arm j .

We split the term into two parts:

µ̂i(t) − µi(t) = (µ̂i(t) − Ui(t)(t)) + (Ui(t)(t)− µi(t))

1. Part A: E[Ui(t)(t)− µi(t)]. How much the UCB estimate is
overoptimistic. This was bounded inside of the UCB1 proof (if
UCB were very overoptimistic, it would not have had a good
regret bound).

2. Part B: E[µ̂i(t) − Ui(t)(t)]. This measures how much the
Thompson sample exceeds our ”safe” upper bound. (Think:
positive only in rare events where we are “surprised”.)



Step 3: Concentration and Summation
By choosing Uj(t) = θ̄j(t − 1) +

√
2 logT
Nj (t−1) :

▶ The term
∑

t E[Ui(t)(t)− µi(t)] scales as O(
√
kT logT ) using

the UCB1 analysis.

▶ Similarly, we can consider (the positive contribution to)∑
t

E[µ̂i(t) − Ui(t)(t)]

and this is also bounded by a similar factor (corresponds to
the “bad events” in UCB1 analysis).

Final Result
We have the in-expectation bound

BR(T ) =
T∑
t=1

E[r(t)] ≲
√
kT logT .

High probability bound by Markov.


