
DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 6: Intro to contextual
bandits

Instructor: Frederic Koehler

References

Lattimore and Szepasvári chapter 18. Foster-Rakhlin lecture notes,
chapter 3.

Beyond the Multi-Armed Bandit

▶ Standard MAB: You have k slot machines. One is the best
on average. You find it and stick to it.

▶ The Missing Piece: In the real world, we often have side
information before we make a choice.

▶ Example:
▶ In MAB, you recommend the same ”best” movie to every user.
▶ In Contextual Bandits, you look at the user’s history

(Context) before choosing which movie to show.

▶ In medicine, some people are allergic to penicillin, drugs may
have interactions, ... so you obviously need to customize your
suggestion to the person at hand.

▶ In sports gambling, you may want to bet differently depending
on the game, players, horse, ...

The Interaction Protocol

For each round t = 1, . . . ,T :

1. Observe Context: The environment reveals x(t) ∈ X .

2. Choose Action: The agent selects an arm i(t) ∈ {1, . . . , k}.
3. Receive Reward: The agent receives r(t) ∈ [0, 1] sampled

from:
r(t) ∼ Di(t)(· | x(t))

4. Feedback: We only see the reward for the chosen arm i(t).
We do not see what would have happened if we picked a
different arm.

Notation
D1(· | x(t)), . . . ,Dk(· | x(t)) are the k reward distributions
conditioned on the current context.

Real-World Examples

Application Context x(t) Arms i(t)

Personalized Med. Patient Vitals/Genetics Different Drugs

News Feed User Browsing History Articles to Show

Ad Placement Search Query/Location Specific Ad Banner

Mobile Health Time of day/Step count Push Notification

Crucially: The ”best” arm changes as x(t) changes.

The Benchmark: The Optimal Policy

In standard MAB, the benchmark is a single best arm i∗. In
Contextual Bandits, the benchmark is a Policy π : X → [k].

▶ Let f ∗(x , i) = E[r | x , i] be the expected reward.

▶ The best possible action for a specific context x is:

i∗(x) = arg max
i∈{1,...,k}

f ∗(x , i)

▶ The Optimal Policy π∗ is the mapping that always chooses
i∗(x) for any given x .

Defining Regret

Regret measures how much reward we ”lost” by not being perfect.

Contextual Regret

Regret(T) =
T∑
t=1

E[r(t) | x(t), i∗(x(t))]−
T∑
t=1

E[r(t) | x(t), i(t)]

▶ In MAB: We compare ourselves to the best fixed arm.

▶ In Contextual Bandits: We compare ourselves to the best
mapping from contexts to arms.

▶ This is a much ”harder” benchmark!

The Challenge of Generalization

▶ If x(t) is unique every time (e.g., a continuous vector), we
might never see the same context twice.

▶ We cannot simply ”average” the rewards for arm 1 like we do
in MAB.

▶ We must generalize: If arm 1 was good for context x , is it
also good for context x ′?

▶ This requires assuming/modeling a relationship between
contexts and rewards (e.g., a function class F such as linear
or neural networks, which predicts the rewards of the arms).

A baseline approach

If the number of possible contexts is limited, we can solve the
problem fairly directly using MAB.

▶ Let C be the context space and |C| the number of contexts.

▶ For every context x ∈ C, use one MAB as an “expert” on this
context.

▶ If Tx is the number of times context x appears, then

Regret ≲
∑
x∈C

√
KTx log(Tx) ≲

√
KT log(T)

▶ Here we used Cauchy-Schwarz:
∑

i aibi ≤
√∑

i a
2
i

√∑
i b

2
i .

Modeling beyond the baseline

How to model the problem when C is too big to enumerate?

▶ Let

f ∗(x , i) = E[r(t) | x(t) = x , i(t) = i] = Er∼Di (·|x)[r]

be the expected reward of arm i given context x .

▶ f ∗ is unknown, however we assume knowledge of a class of
functions

F : X × [K] → [0, 1]

such that f ∗ ∈ F .

▶ Contextual bandit combines learning/forecasting (trying to
figure out the true reward function f ∗) with decision-making
(how to pick the arm to pull).

Can we just Explore-Then-Commit (ETC)?

▶ ETC was an easy, but suboptimal, method for solving the
MAB. Can we use it for CB?

▶ Natural ETC approach: use the first m rounds to learn the
reward model f ∗ by picking random actions, fit a good model
f̂ based on observations, and then be greedy according to f̂
forecasts.

▶ Given first m observations, we can try to use any supervised
learning method to learn f̂ from data.

▶ I.e. after m rounds, pick arm

i(t) = argmax
i

f̂ (x(t), i).

▶ Does it work?

Failure of ETC in this model

▶ As formulated, ETC/NAIVE-EE (Explore Then Commit) is
not a good strategy for our model.

▶ This is because the contexts x(1), . . . , x(T) are arbitrary. So
if you explore for the first m rounds, I can show you only one
context in the first m rounds.

▶ ETC would be okay if we modeled contexts x(1), . . . , x(T) as
i.i.d. samples.

▶ More general formulation is nice in that contexts can change
over time — realistic concern. (Ex: no users with iphones
before 2007, lots of users with iphones by now).

▶ However, we assume the true reward model f ∗ does not
change over time.

Future lectures on CB

▶ Following the Foster-Rakhlin notes, we will cover two quite
different approaches to solving the CB.

▶ Approach 1: generalize UCB approach (Upper Confidence
Bounds). “optimism”

▶ Approach 2: modularize forecasting and decision making. Ex:
ϵ-greedy and smarter variants.

▶ We will start with approach 2 first. (simpler?)

▶ CB is a nice special case of RL where we do not model the
effect of our interactions on the environment. Practically and
theoretically clean.

