
DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 7: ϵ-Greedy contextual
bandits

Instructor: Frederic Koehler

Reference

Chapter 3.4 of Rakhlin-Foster notes.

2 / 18

Continuing from last time

▶ Last time: introduced CB (contextual bandit) model.

▶ Saw that naive ETC (Explore-Then-Commit) does not work in
our model. “Distribution shift”

▶ We saw how to successfully reduce CB to MAB if the number
of contexts is small.

▶ This means: we used “black box” the fact that we have
provably good algorithms for MAB (“MAB oracle”), to come
up with algorithms for CB.

▶ This algorithm is reasonable for small number of contexts.
Now lets go beyond this.

▶ We continue with the reduction-based approach !

3 / 18

The Contextual Bandit Setting
▶ Setup:

▶ Time t = 1, . . . ,T .
▶ Context space X , Arm set A = [K].
▶ Environment generates context x(t) ∈ X .
▶ We observe x(t), choose arm i(t) ∈ A, and observe reward

r(t).

▶ Realizability Assumption:
▶ There exists f ∗ ∈ F such that

E[r(t) | x(t), i(t)] = f ∗(x(t), i(t)).

▶ Optimal arm: i∗(t) = argmaxi∈A f ∗(x(t), i).

▶ Goal: Minimize Regret defined as:

RegretT =
T∑
t=1

(f ∗(x(t), i∗(t))− r(t))

4 / 18

Our high-level strategy

▶ Last time: use an oracle to “black box” decision-making
(MAB).

▶ Not a promising approach to “black box” decision-making in
more general CB.

▶ Instead, lets “white box” decision-making and black-box
forecasting/learning !

▶ “Specialization of labor”: one agent handles decision-making,
one agent handles forecasting.

5 / 18

The Online Regression Oracle

We will need to an access which can learn to predict online.

Definition (Online Square Loss Oracle)

An algorithm that produces predictors f̂t ∈ F based on the history
(x(1), i(1), r(1)), . . . , (x(t − 1), i(t − 1), r(t − 1)).

Oracle Regret Bound (RSq):

T∑
t=1

(f̂t(x(t), i(t))− r(t))2− inf
f ∈F

T∑
t=1

(f (x(t), i(t))− r(t))2 ≤ RSq(T)

▶ Note: The oracle only sees the loss on the arms i(t) we
actually played.

▶ Key point: For CB, we (essentially) need the oracle to be
accurate on all arms to find the argmax, but oracle is only
trained/guaranteed to be accurate on played arms.

6 / 18

White box exploration strategy

1. For MAB we saw that UCB1 was a pretty good exploration
strategy.

2. UCB1 doesn’t just build estimates of arms, but also tries to
measure their uncertainty.

3. Makes it tricky to build UCB based on a black-box forecaster.

4. Instead: lets use another beloved exploration strategy —
ϵ-greedy !

7 / 18

Algorithm: ϵ-Greedy with Regression

Algorithm 1 ϵ-Greedy with Regression Oracle

1: Input: Exploration parameter ϵ ∈ (0, 1), Regression Oracle.
2: for t = 1, . . . ,T do
3: Receive context x(t).
4: Get current predictor f̂t from the Regression Oracle.
5: Compute Greedy Arm: î(t) = argmaxi∈A f̂t(x(t), i).
6: Arm Selection (i(t)):
7: if Bernoulli(ϵ) = 1 then
8: Play i(t) ∼ Unif(A) ▷ Explore
9: else

10: Play i(t) = î(t) ▷ Exploit
11: end if
12: Observe reward r(t).
13: Update Oracle with tuple (x(t), i(t), r(t)).
14: end for

8 / 18

Theorem: Regret of ϵ-Greedy

Theorem
The expected regret of the ϵ-greedy algorithm is bounded by:

E[RegretT] ≤ ϵT +

√
KT

ϵ
· RSq(T)

Optimizing ϵ, we get E[RegretT] ≤ O(T 2/3(KRSq(T))1/3).

Proof Strategy:

1. Decompose regret into ”Exploration cost” and ”Estimation
cost”.

2. Relate the ”Estimation cost” to the oracle’s prediction error
on all arms.

3. Link the error on all arms to the error on observed arms
(using the ϵ probability).

9 / 18

Step 1: Decomposition

Consider the expected instantaneous regret (conditioned on
history). Since E[r(t)|x(t), i(t)] = f ∗(x(t), i(t)), we analyze the
gap in expected rewards:

Gapt = f ∗(x(t), i∗(t))− f ∗(x(t), i(t))

Taking the expectation over the algorithm’s randomness at step t:

Et [Gapt] = ϵEi∼U [f
∗(x(t), i∗(t))− f ∗(x(t), i)]

+ (1− ϵ)(f ∗(x(t), i∗(t))− f ∗(x(t), î(t)))

≤ ϵ+ (f ∗(x(t), i∗(t))− f ∗(x(t), î(t)))

▶ The first term is the cost of forced exploration (ϵ).

▶ The second term is the sub-optimality of our greedy choice
î(t).

10 / 18

Step 2: Bounding the Greedy Gap
We need to bound f ∗(x(t), i∗(t))− f ∗(x(t), î(t)). Recall î(t)
maximizes f̂t , so f̂t(x(t), î(t)) ≥ f̂t(x(t), i

∗(t)).
We can rewrite the gap as:

f ∗(x(t), i∗(t))− f ∗(x(t), î(t)) = f ∗(x(t), i∗(t))− f̂t(x(t), i
∗(t))

+ f̂t(x(t), i
∗(t))− f̂t(x(t), î(t))︸ ︷︷ ︸

≤0

+ f̂t(x(t), î(t))− f ∗(x(t), î(t))

Using triangle inequality:

≤ |f ∗(x(t), i∗(t))− f̂t(x(t), i
∗(t))|+ |f̂t(x(t), î(t))− f ∗(x(t), î(t))|

This is bounded by the sum of prediction errors on all arms:

≤
∑
i∈A

|f̂t(x(t), i)− f ∗(x(t), i)|

11 / 18

Step 3: From L1 Error to Squared Error

We have the gap bounded by the L1 error sum. Using
Cauchy-Schwarz (

∑K
j=1 zj)

2 ≤ K
∑K

j=1 z
2
j :

(f ∗(x(t), i∗(t))− f ∗(x(t), î(t)))2 ≤

(∑
i∈A

|f̂t(x(t), i)− f ∗(x(t), i)|

)2

≤ K
∑
i∈A

(f̂t(x(t), i)− f ∗(x(t), i))2

Let’s denote the total squared estimation error across all arms as:

Lt(f̂t) =
∑
i∈A

(f̂t(x(t), i)− f ∗(x(t), i))2

=⇒ f ∗(x(t), i∗(t))− f ∗(x(t), î(t)) ≤
√

K · Lt(f̂t)

12 / 18

Step 4: Comparison to uniform exploration
The Oracle optimizes loss on the observed arm i(t). How does this
relate to the total error Lt(f̂t)?
The algorithm chooses i(t) from a distribution πt where πt(i) ≥ ϵ

K
for all i ∈ A.
Consider the expected squared error of the oracle at step t:

Ei(t)∼πt
[(f̂t(x(t), i(t))− f ∗(x(t), i(t)))2]

=
∑
i∈A

πt(i)(f̂t(x(t), i)− f ∗(x(t), i))2

≥ ϵ

K

∑
i∈A

(f̂t(x(t), i)− f ∗(x(t), i))2 =
ϵ

K
Lt(f̂t)

since πt(i) ≥ ϵ
K .

Therefore:

Lt(f̂t) ≤
K

ϵ
Ei(t)[(f̂t(x(t), i(t))− f ∗(x(t), i(t)))2]

13 / 18

Step 5: Summing Over Time
We found: Et [Regrett] ≤ ϵ+

√
K · Lt(f̂t). Summing over T :

E[RegretT] ≤ ϵT +
T∑
t=1

E
[√

KLt(f̂t)

]
By Jensen’s Inequality (concavity of

√
·) and then Cauchy-Schwarz

(
∑√

zt ≤
√

T
∑

zt):

E[RegretT] ≤ ϵT +

√√√√T · K ·
T∑
t=1

E[Lt(f̂t)]

Substitute our bound Lt ≤ K
ϵ ObservedErrort :

≤ ϵT +

√√√√T · K · K
ϵ

T∑
t=1

E[(f̂t(x(t), i(t))− f ∗(x(t), i(t)))2]

14 / 18

Step 6: Using the Oracle Guarantee
The term inside the square root corresponds to the Oracle’s
performance.
Recall: The Oracle bounds

∑
(f̂t − r(t))2, not (f̂t − f ∗)2.

However, under the realizability assumption (where
r(t) = f ∗(x(t), i(t)) + noise):

E[(ŷ − y)2]− E[(f ∗(x)− y)2] = E[(ŷ − f ∗(x))2]

(The noise variance cancels out in the regret difference).
So the Oracle property implies:

T∑
t=1

E[(f̂t(x(t), i(t))− f ∗(x(t), i(t)))2] ≤ RSq(T)

Substituting this back:

E[RegretT] ≤ ϵT +

√
K 2T

ϵ
RSq(T)

15 / 18

Step 7: Balancing ϵ
We have the bound: B(ϵ) = ϵT + Cϵ−1/2 where C = K

√
TRSq.

To minimize this, set the derivative to 0:

T − 1

2
Cϵ−3/2 = 0 =⇒ ϵ3/2 =

C

2T
=⇒ ϵ ≈

(
K
√

RSq√
T

)2/3

This yields the final rate:

RegretT ≤ O(T 2/3(KRSq(T))1/3)

Conclusion:

▶ Contextual Bandits are solvable given an Online Regression
Oracle.

▶ The rate is (at best) T 2/3, which is suboptimal compared to
T 1/2.

▶ Next: how to do online regression?

▶ Later: SquareCB (achieving T 1/2 via optimal exploration).

16 / 18

A natural baseline learner

▶ Suppose that |F| is finite and not too large.
▶ (It is usually safe to think of F as finite but possibly large

relative to T , possibly superpolynomial size in T .)

▶ Natural strategy: forecaster = ERM =

f̂t = argmin
f ∈F

∑
s<t

(r(s)− f (x(s), i(s)))2

▶ Question: how good of a regret bound does this forecaster
satisfy for online least squares?

17 / 18

Comment on baseline learner

▶ It can be made to suffer regret Ω(|F|). (Why?)

▶ This is bad if |F| = T .

▶ Question 2: is this avoidable with a better strategy?

▶ Question 3: for ERM, does it obtain o(T) regret if
|F| = O(1)?

18 / 18

