DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 7: c-Greedy contextual
bandits

Instructor: Frederic Koehler

Reference

Chapter 3.4 of Rakhlin-Foster notes.

2/18

Continuing from last time

» Last time: introduced CB (contextual bandit) model.

» Saw that naive ETC (Explore-Then-Commit) does not work in
our model. “Distribution shift”

» We saw how to successfully reduce CB to MAB if the number
of contexts is small.

» This means: we used “black box" the fact that we have
provably good algorithms for MAB (“MAB oracle”), to come
up with algorithms for CB.

» This algorithm is reasonable for small number of contexts.
Now lets go beyond this.

> We continue with the reduction-based approach !

3/18

The Contextual Bandit Setting

> Setup:
> Timet=1,...,T.
> Context space X Arm set A = [K].
> Environment generates context x(t) € X.
> We observe x(t), choose arm i(t) € A, and observe reward

r(t).

> Realizability Assumption:
» There exists f* € F such that

E[r(t) | x(2),i(2)] = £*(x(1), i(t)).

» Optimal arm: i*(t) = arg max;c 4 f*(x(t), /).

» Goal: Minimize Regret defined as:

;
Regretr = Y (F*(x(t),i*(t)) — r(t))
t=1

4/18

Our high-level strategy

P> Last time: use an oracle to “black box" decision-making
(MAB).

» Not a promising approach to “black box" decision-making in
more general CB.

P Instead, lets “white box" decision-making and black-box
forecasting/learning !

» “Specialization of labor”: one agent handles decision-making,
one agent handles forecasting.

5/18

The Online Regression Oracle

We will need to an access which can learn to predict online.

Definition (Online Square Loss Oracle)
An algorithm that produces predictors f; € F based on the history

(x(1),i(1), r(1)), ..., (x(t = 1),i(t — 1), r(t — 1)).
Oracle Regret Bound (Rsg):

\1

T
> (R(x(t),i(t) - —inf) (F(x(t),i(t)) —r(t))? < Rsq(T)
t=1 feria
» Note: The oracle only sees the loss on the arms i(t) we
actually played.

> Key point: For CB, we (essentially) need the oracle to be
accurate on all arms to find the argmax, but oracle is only
trained /guaranteed to be accurate on played arms.

6/18

White box exploration strategy

1. For MAB we saw that UCB1 was a pretty good exploration
strategy.

2. UCB1 doesn't just build estimates of arms, but also tries to
measure their uncertainty.

3. Makes it tricky to build UCB based on a black-box forecaster.

4. Instead: lets use another beloved exploration strategy —
e-greedy !

7/18

Algorithm: e-Greedy with Regression

Algorithm 1 ¢-Greedy with Regression Oracle

1. Input: Exploration parameter € € (0,1), Regression Oracle.

2. fort=1,..., T do

3 Receive context x(t).

4 Get current predictor ft from the Regression Oracle.

5: Compute Greedy Arm: i(t) = arg max;c 4 f:(x(t), i).

6: Arm Selection (i(t)):

7 if Bernoulli(e) = 1 then

8 Play i(t) ~ Unif(A) > Explore
o: else

10: Play i(t) = i(t) > Exploit
11: end if

12: Observe reward r(t).

13 Update Oracle with tuple (x(t),i(t), r(t)).

14: end for

8/18

Theorem: Regret of e-Greedy

Theorem
The expected regret of the e-greedy algorithm is bounded by:

KT
E[Regrety] < €T 4+ 1/ — - Rsq(T)
€

Optimizing ¢, we get E[Regret] < O(T?/3(KRsq(T))Y/3).
Proof Strategy:

1. Decompose regret into " Exploration cost” and " Estimation
cost”.

2. Relate the " Estimation cost” to the oracle’s prediction error
on all arms.

3. Link the error on all arms to the error on observed arms
(using the € probability).

9/18

Step 1: Decomposition

Consider the expected instantaneous regret (conditioned on
history). Since E[r(t)|x(t),i(t)] = f*(x(t), i(t)), we analyze the
gap in expected rewards:

Gap, = 7(x(¢),i*(t)) — F(x(t),i(t))
Taking the expectation over the algorithm’s randomness at step t:
E¢[Gap,] = eEjnu[f*(x(t), i"(£)) — £ (x(2),)]
+ (1= e)(F(x(2), *(t) — £ (x(t), (1))
< e+ (F(x(2),i*(1) — £ (x(2), (1))

» The first term is the cost of forced exploration (¢).

» The second term is the sub-optimality of our greedy choice

i(t).

10/18

Step 2: Bounding the Greedy Gap
We need to bound f*(x(t), i*(t)) — f*(x(t),(t)). Recall i(t)
maximizes £, so f(x(t), 1(t)) > f(x(t), *(t)).
We can rewrite the gap as:

FH(x(t), (£) = F(x(2), 1(2) = £ (x(2), (1)) — felx(2), (1))
+ f(x(2), I*(2) — f(x(2), (1))

<0

+ A(x(2), 1(8) = F(x(2), /(1))

Using triangle inequality:

< IF*(x(e), () = Felx(2), 7 (0))] + [Fe(x(2), 1(£)) — £ (x(2), /(1))

This is bounded by the sum of prediction errors on all arms:

<D 1R(x(2), 1) = £ (x(2), 1)

icA

11/18

Step 3: From L; Error to Squared Error

We have the gap bounded by the L; error sum. Using
Cauchy-Schwarz (ZJK::L z)? < KZJ'K:;L ZJ_2.

2
(F*(x(2), i*(t)) — F*(x (1), i <Z!fr — 7 (x(¢), /)\)
ieA
<K (R(x(t), i) = £ (x(t), 1))?
icA

Let's denote the total squared estimation error across all arms as:

Le(F) =D (R(x(t),) — £*(x(t), 1))?

icA

= (x(2), (1) = £ (x(2), i(£)) < \/ K - Le(f)

12/18

Step 4: Comparison to uniform exploration
The Oracle optimizes loss on the observed arm i(t). How does this
relate to the total error L(f)?
The algorithm chooses i(t) from a distribution m; where 7:(i) > &
for all i € A.
Consider the expected squared error of the oracle at step t:

oy (B (x(0), /(r)) — £ (x(0). i(1)))]
= S (R x(0).) — £ (x(2).)Y

icA
: ;iGZA(ft(X(t),) F ()) = Ll
since (i) > %

Therefore:

Le(fe) < gEi(t)[(ﬁr(X(t)a i(£)) = F*(x(t),i()))?]

13/18

Step 5: Summing Over Time
We found: E[Regret,] < e+ /K - L¢(f). Summing over T

-
E[Regret1] < eT + ZE [KLt(Ft):|

t=1

By Jensen's Inequality (concavity of /) and then Cauchy-Schwarz

(o Vze < /T z):

-
E[Regrety] <eT + J T-K- ZE[Lt(ﬁ)]

t=1

Substitute our bound L; < gObservedErrort:

-
<eT + \l T.K. gZE[(ft(x(t), i(t)) — £(x(t),i(t)))?]

t=1

14/18

Step 6: Using the Oracle Guarantee

The term inside the square root corresponds to the Oracle’s
performance.

Recall: The Oracle bounds S (— r(t))2 not (f; — f*)2.
However, under the realizability assumption (where

r(t) = f*(x(t), i(t)) + noise):
E[(§ — y)?] = E[(f*(x) = y)’] = E[(— £*(x))’]

(The noise variance cancels out in the regret difference).
So the Oracle property implies:

ZE[(Fe(x(2),i(£)) = £ (x(2), i(1)))’] < Rsq(T)
Substituting this back:
E[Regrety] <eT + ﬂF\’sq(T)

15/18

Step 7: Balancing ¢

We have the bound: B(e) = €T + Ce /2 where C = K/TRs,.
To minimize this, set the derivative to 0:

2/3
K./R
T—;C€_3/2—0:>63/2C:>6%(Sq)

2T VT
This yields the final rate:
Regrety < O(T%/3(KRsq(T))Y?)

Conclusion:

» Contextual Bandits are solvable given an Online Regression
Oracle.

> The rate is (at best) T2/3, which is suboptimal compared to
T2,

» Next: how to do online regression?

> Later: SquareCB (achieving T'/2 via optimal exploration).

16/18

A natural baseline learner

» Suppose that |F| is finite and not too large.

» (It is usually safe to think of F as finite but possibly large
relative to T, possibly superpolynomial size in T.)

> Natural strategy: forecaster = ERM =

fp=arg min > _(r(s) — F(x(s), i()))?

» Question: how good of a regret bound does this forecaster
satisfy for online least squares?

17/18

Comment on baseline learner

» It can be made to suffer regret Q(|F]). (Why?)
» This is bad if |[F|=T.
» Question 2: is this avoidable with a better strategy?

» Question 3: for ERM, does it obtain o(T) regret if
|F| = 0(1)?

18/18

