
DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 8: The Learning from
Experts Problem
Instructor: Frederic Koehler



Reminder I

Homework is due on gradescope by 9 am tomorrow. If you have
technical issues with gradescope, email your solutions to me and
Joon, the TA (but gradescope is strongly preferred).

Midterm is next week (Thursday, in class). Two-sided cheat sheet,
no calculator. I will release a briefy summary sheet reminding what
topics we covered in the first part of this class (up to today). The
midterm will not require explicit knowledge from Tuesday’s class,
but all the content is related so showing up on Tuesday is probably
still helpful.

2 / 19



Reminder II

Last class we went over the reduction from the contextual bandits
problem to online least squares reduction. This means we can
focus on forecasting/ prediction/learning online for a bit. We can
forget everything about bandits for today.

Today’s lecture is based on Cesa-Bianchi and Lugosi’s book
Prediction, Learning, and Games, Chapter 3.4. I will emphasize a
Bayesian perspective which I think makes it easier to understand.

3 / 19



Prediction with Expert Advice

The Online Prediction Protocol:

▶ We have a set of m experts, indexed by i = 1, . . . ,m.
▶ At each time step t = 1, 2, . . . ,T :

1. Each expert i reveals a prediction fi (t) ∈ [0, 1].
2. The learner (us) predicts ŷ(t) ∈ [0, 1].
3. The environment reveals the outcome y(t) ∈ [0, 1].
4. We incur squared loss (ŷ(t)− y(t))2.
5. Experts incur squared loss (fi (t)− y(t))2.

Goal: Minimize Regret relative to the best expert:

RT =
T∑
t=1

(ŷ(t)− y(t))2 −min
i

T∑
t=1

(fi (t)− y(t))2

4 / 19



Some comments on the setup

▶ Customary framing here: minimize loss here rather than
maximize reward. (Related by negation.)

▶ This setup is actually harder than what we need for the
contextual bandits application from last class.

▶ In contextual bandits, we assumed the rewards r(t)
(corresponds to y(t) here) are generated probabilistically with

E[y(t) | x(t)] = f ∗(x(t), i∗(t)).

Note m = |F| in our previous notation, and we required
f ∈ F !

▶ In some cases, using the fact that the model is
“well-specified” makes things easier.

▶ But for today, it does not help. We can achieve low regret for
any sequence of y(t).

5 / 19



ERM is bad (in general)

▶ Here by ERM I mean: play what worked best in hindsight.

▶ Last time I sketched why ERM suffers Ω(m) regret. (Recall
m = |F|, we will see this is extremely suboptimal !) This
lower bound does hold even in the well-specified setting.

▶ If responses y(t) are adversarial (general setup), it is possible
to show ERM can suffer Ω(T ) regret even when m = O(1).
(Why?)

▶ What if responses y(t) are well-specified? It’s no longer
obvious to me. Fun question to think about.

6 / 19



Comment on function class size

▶ Why is Ω(m) regret bad?

▶ “Real life” function classes (e.g. linear models, neural nets,
decision trees, ...) are very large, generally exponential in
number of parameters.

▶ Linear model in d dimensions is size eΩ(d), “curse of
dimensionality”/Johnson-Lindenstrauss Lemma.

▶ More concretely, Johnson-Lindenstrauss lemma tells us there
are eΩ(d) vectors in d dimensions such that they are almost
orthogonal — their angles are all at least 89 degrees. Tricky
to visualize...

7 / 19



Today’s Bayesian perspective

▶ For a statistical model with parameters θ and data X , there
are two important perspectives to remember.

▶ Frequentist: the parameters θ are unknown but fixed.
Randomness is over the process generating the data
X ∼ p(X | θ).

▶ Bayesian: probabilities are subjective and model our beliefs
about the unknown parameter θ. The purpose of p(X | θ) is
to tell us how to update our posterior beliefs using Bayes rule

p(θ | X ) ∝ p(X | θ)p(θ)

based on the data X and our prior beliefs p(θ).

8 / 19



A Bayesian Perspective

Although the data y(t) is not necessarily random, we model it
stochastically to derive our algorithm. Natural idea for a Bayesian.

The Model:

▶ Prior: We assume a uniform prior over the experts.

πi (0) =
1

m
∀i

▶ Likelihood: Expert i models the response y(t) as a Gaussian
centered at fi (t) with variance σ2:

P(y(t) | fi (t)) ∝ exp

(
−(y(t)− fi (t))

2

2σ2

)
where σ2 > 0 is a parameter we will tune later.

9 / 19



The Algorithm: Predicting the Posterior Mean

Posterior Update: By Bayes rule, the posterior weight of expert i
at time t is:

πi (t) ∝ πi (t − 1)× P(y(t) | fi (t))

and calculating it out we get

πi (t) =
πi (t − 1) exp

(
− (y(t)−fi (t))

2

2σ2

)
∑K

j=1 πj(t − 1) exp
(
− (y(t)−fj (t))2

2σ2

)
Prediction Strategy: Predict the mean of the posterior
distribution:

ŷ(t + 1) =
K∑
i=1

πi (t)fi (t + 1)

“Bayes optimal” prediction.

10 / 19



Exponential Weights Interpretation

Let us define the learning rate η = 1
2σ2 .

The cumulative squared loss of expert i is
Li ,t =

∑t
τ=1(y(τ)− fi (τ))

2.

Unrolling the recursion πi (t) ∝ πi (t − 1)e−η(fi (t)−y(t))2 :

πi (t) =
e−ηLi,t∑m
j=1 e

−ηLj,t

Remark: This Bayesian strategy is exactly the “Exponentially
Weighted Forecaster” with learning rate η = 1/2σ2 using Squared
Loss. (Standard terminology.) As we will see, it works very well
for arbitrary data despite its Bayesian derivation.

11 / 19



Key Property: Exp-Concavity

To analyze the regret, we use the property of exp-concavity.

Exp-concavity of Squared Loss

For domains [0, 1] and any outcome y ∈ [0, 1], the function:

G (x) = exp
(
−η(x − y)2

)
is concave in x provided that η ≤ 1

2 .

Sidenote: Exp-concavity of squared loss allows us to achieve a
tight O(logK ) bound; for some other losses, one can only hope for
O(

√
T ) regret (e.g. L1 loss |x − y | is not exp-concave).

(To take advantage of this, we will pick σ2 ≥ 1 since η = 1/2σ2).

12 / 19



Main Result (Theorem 3.2)

Regret Bound for Squared Loss

If we choose η = 1/2 (i.e., σ2 = 1), the regret of the Exponentially
Weighted Forecaster satisfies:

T∑
t=1

(ŷ(t)− y(t))2 −min
i

T∑
t=1

(fi (t)− y(t))2 ≤ 2 logm

Note:

▶ The bound is independent of the time horizon T .

▶ It grows only logarithmically with the number of experts m.

13 / 19



Proof via Potential Functions (Step 1)

We define Potential Function Φt as a “softmax” of −Li ,t (−Φt is
a “softmin” of Li ,t):

Φt =
1

η
log

(
m∑
i=1

e−ηLi,t

)

Consider the potential difference Φt − Φt−1:

Φt − Φt−1 =
1

η
log

(∑m
i=1 e

−ηLi,t−1e−η(fi (t)−y(t))2∑m
j=1 e

−ηLj,t−1

)

Recognize the term inside log(·) as an expectation under the
posterior π(t−1):

Φt − Φt−1 =
1

η
log
(
Ei∼π(t−1)

[
e−η(fi (t)−y(t))2

])
14 / 19



Remark: potential function strategy

▶ We define Potential Function Φt as a “softmax” of −Li ,t
(−Φt is a “softmin” of Li ,t):

Φt =
1

η
log

(
m∑
i=1

e−ηLi,t

)

▶ Note that Φ0 = log(m)/η. Recall Li ,t =
∑t

s=1(y(s)− fi (s))
2.

▶ We will show that (1) the potential decreases at every step,
(2) the potential goes own a lot only if our prediction is bad,
and (3) the size of −Φt is closely related to the minimum loss.

▶ General idea: drop in potential at round t is how “surprised”
we are.

15 / 19



Proof via Potential Functions (Step 2)

Using the exp-concavity property: The function x 7→ e−η(x−y(t))2

is concave for η ≤ 1/2.

By Jensen’s Inequality:

Ei∼π(t−1)

[
e−η(fi (t)−y(t))2

]
≤ e−η(E[fi (t)]−y(t))2

Since our algorithm predicts the mean ŷ(t) = Ei∼π(t−1) [fi (t)]:

Ei∼π(t−1)

[
e−η(fi (t)−y(t))2

]
≤ e−η(ŷ(t)−y(t))2

Substituting this back into the potential difference:

Φt − Φt−1 ≤
1

η
log
(
e−η(ŷ(t)−y(t))2

)
= −(ŷ(t)− y(t))2

rhs: how surprised we are

16 / 19



Proof Conclusion
Summing the inequality over t = 1, . . . ,T :

ΦT − Φ0 =
T∑
t=1

(Φt − Φt−1) ≤ −
T∑
t=1

(ŷ(t)− y(t))2

Rearranging and substituting Φ0 =
logm
η :

T∑
t=1

(ŷ(t)− y(t))2 ≤ logm

η
− ΦT

We bound −ΦT :

−ΦT = −1

η
log

(
K∑
i=1

e−ηLi,T

)
≤ −1

η
log

(
max

i
e−ηLi,T

)
= min

i
Li ,T

Final Bound:
T∑
t=1

(ŷ(t)− y(t))2 −min
i

T∑
t=1

(fi (t)− y(t))2 ≤ logm

η

17 / 19



Additional remark

▶ From analysis, we see we could also have defined the potential
function to be

t∑
s=1

(y(s)− ŷ(s))2 +
1

η
log

(
m∑
i=1

e−ηLi,t

)

and it would have been non-increasing.

▶ Note: this is similar but not identical to the squared loss
regret!

18 / 19



Further Discussion

▶ Good to think about: why it avoids Ω(|F|) lower bound
arguments?

▶ From a purely statistical perspective, this is an excellent
strategy for any functional class F (just discretize it if
infinite). C.f. [Yang-Barron ’99]

▶ However, it is not very algorithmically practical if |F| is large
(again, it is often exponentially large).

▶ In real life we care a lot about vectors and linear models.
Future class: how to do linear regression in an online fashion?

▶ CB reminder: Yields Õ(T 2/3(log |F|)1/3) regret if we plug it
into ϵ-greedy. Not that bad, but improvable.

19 / 19


