
DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 9: The Online Ridge
Forecaster

Instructor: Frederic Koehler

References

Cesa-Bianchi and Lugosi, Chapters 3 and 11.

2 / 20

Recap

▶ We saw how to use ϵ-Greedy to reduce contextual bandits to
online prediction/forecasting/learning (with squared loss).

▶ For finite classes, we saw how to solve online prediction (even
in the “adversarial” setting with no probabilities involved)
using multiplicative updates. We showed how to derive the
algorithm via a simple Bayesian model.

▶ For large/infinite classes, we can forecast with low regret by
discretizing the function class (ϵ-net argument), using the
log |F| scaling of multiplicative weights.

▶ However, this is often not algorithmically practical.

▶ For a “real world” setting like linear models, can we find a
faster forecasting strategy?

3 / 20

From Finite to Infinite Experts
Recap: Finite Experts

▶ We had K discrete experts.

▶ Prior: Uniform 1/K .

▶ Algorithm: Exponential Weights (Posterior Mean).

▶ Regret: O(logK).

New Setting: Linear Experts

▶ Experts are now vectors u ∈ Rd .

▶ At step t, we see feature vector xt ∈ Rd .

▶ Expert u predicts fu(t) = u⊤xt .

▶ Goal: Compete with the best fixed vector u∗:

min
u∈Rd

T∑
t=1

(yt − u⊤xt)
2

4 / 20

The Bayesian Linear Model

We apply the same Bayesian strategy: Predict the Posterior Mean.

1. The Prior (Gaussian): Instead of a uniform prior, we place a
Gaussian prior on the weight vector u, centered at 0 with variance
parameter a > 0:

u ∼ N (0, aI)

p(u) ∝ exp

(
−∥u∥2

2a

)
2. The Likelihood (Gaussian): We model the data generation as
linear with Gaussian noise (variance σ2):

yt | xt , u ∼ N (u⊤xt , σ
2)

p(yt | xt , u) ∝ exp

(
−(yt − u⊤xt)

2

2σ2

)

5 / 20

Deriving the Posterior

After observing data Dt−1 = {(x1, y1), . . . , (xt−1, yt−1)}, the
posterior p(u | Dt−1) is proportional to Prior × Likelihoods.

The exponent looks like:

−1

2

(
∥u∥2

a
+

t−1∑
s=1

(ys − u⊤xs)
2

σ2

)

This is a quadratic form in u, meaning the posterior is also
Gaussian:

u | Dt−1 ∼ N (µt−1,Σt−1)

The posterior mean is a ridge regression estimator (next slide).

6 / 20

Online Ridge: Predict the Posterior Mean
We define the correlation matrix At−1 (inverse covariance):

At−1 =
σ2

a
I +

t−1∑
s=1

xsx
⊤
s

The mean of the posterior µt−1 minimizes the Ridge objective:

µt−1 = argmin
u

(
σ2

a
∥u∥2 +

t−1∑
s=1

(ys − u⊤xs)
2

)

The Algorithm (Online Ridge Forecaster)

At time t:

1. Receive xt .

2. Predict ŷt = µ⊤
t−1xt .

3. Receive yt .

4. Compute µt (updated Ridge solution).

7 / 20

Regret Bound
We analyze the regret against any fixed comparator u.

Theorem (Regret of Ridge Forecaster)

Let λ = σ2/a and suppose σ2 ≥ 1. The cumulative squared loss of
the algorithm satisfies:

T∑
t=1

(ŷt−yt)
2−

T∑
t=1

(u⊤xt−yt)
2 ≤ λ∥u∥2+σ2 log det(AT)−σ2 log det(λI)

Simplification: This bound is best when we take σ2 = 1 (same as
in finite case). Suppose for simplicity/by rescaling that ∥xt∥ ≤ 1
always, then

log detAT =
d∑

i=1

log λi (AT) ≤ d log(λ+ T)

Take λ = 1; the regret against ∥u∥ ≤ R is O(R2 + d log(T + 1)).
8 / 20

Recall: Exp-Concavity

Like last time, to analyze the regret we we use the property of
exp-concavity.

Exp-concavity of Squared Loss

For domains [0, 1] and any outcome y ∈ [0, 1], the function:

G (x) = exp
(
−η(x − y)2

)
is concave in x provided that η ≤ 1

2 .

We will apply this with η = 1/2σ2, in which case the condition
η ≤ 1/2 becomes σ2 ≥ 1.

9 / 20

Exp-concavity: posterior mean dominates posterior
Since our algorithm predicts the posterior mean

ŷ(t) = Eu∼p(u|Ft−1)[u
T x(t)],

by exp-concavity and Jensen’s inequality, we know that:

Eu∼p(u|Ft−1)

[
e−η(uT x(t)−y(t))2

]
≤ e−η(ŷ(t)−y(t))2

In English: the likelihood of the response y under the model
N(ŷ , 1/2η) is always higher than the likelihood under the posterior∫
N(uT x , 1/2η)dp(u | Ft−1). Taking logs,

logEu∼p(u|Ft−1)

[
e−η(uT x(t)−y(t))2

]
≤ −η(ŷ(t)− y(t))2

Note: we can improve on the posterior because in reality y ∈ [0, 1],
but the posterior does not know this, it is based on a Gaussian
assumption. Here the misspecification of our model is “useful”.

10 / 20

Potential analysis

Follow the pattern from last time:

▶ If the data is fit well by a some linear model u ∈ Rd , the
log-likelihood of the data under the Bayesian model is high.

▶ By exp-concavity, the log-likelihood of the data under the
posterior mean model is always better !

▶ Log-likelihood under the posterior mean model is the same as
squared loss.

Now we go through these steps in detail and see how it yields the
regret bound.

11 / 20

Proof via Potential Functions (Step 1)

We define the Potential Function as the negative log-marginal
likelihood (normalizing constant):

Φt = −σ2 log

(∫
Rd

t∏
s=1

e−
(ys−u⊤xs)

2

2σ2 · e−
∥u∥2
2a du

)
(Note the scaling factor σ2 to match the squared loss scale).

This integral can be computed exactly for Gaussians:∫
e−

1
2σ2 (

∑
(ys−u⊤xs)2+λ∥u∥2)du =

√
(2πσ2)d

det(At)
e−

1
2σ2 minu Lt(u)

where Lt(u) is the cumulative Ridge loss.

12 / 20

Proof via Potential (Step 2)

Taking the log of the integral:

Φt =
σ2

2
log det(At) + min

u

1

2

(
λ∥u∥2 +

t∑
s=1

(ys − u⊤xs)
2

)
+ const

On the other hand, consider the incremental update Φt − Φt−1.
By Bayes rule, the difference is given by the log likelihood of the
observation

Φt − Φt−1 = −σ2 logP(yt | xt ,Dt−1) ≥
1

2
(ŷt − yt)

2

where we used η = 1/2σ2 and the last inequality was the key
conclusion from exp-concavity.

13 / 20

Proof via Potential (Conclusion)
Telescoping the last inequality, we find

ΦT − Φ0 =
T∑
t=1

(Φt − Φt−1) ≥
1

2

T∑
t=1

(ŷt − yt)
2.

We also computed that

ΦT =
σ2

2
log det(AT)+min

u

1

2

(
λ∥u∥2 +

T∑
s=1

(ys − u⊤xs)
2

)
+const

and similarly Φ0 =
σ2

2 log det(A0) + const. So indeed,

1

2

T∑
t=1

(ŷt − yt)
2 ≤ σ2

2
log det(AT)−

σ2

2
log det(λI)

+ min
u

1

2

(
λ∥u∥2 +

t∑
s=1

(ys − u⊤xs)
2

)
14 / 20

An algorithmic improvement
The Computational Bottleneck
▶ In the naive implementation, computing the posterior mean

µt = A−1
t

∑t
s=1 ysxs requires inverting a d × d matrix at

every step.
▶ Naive inversion takes O(d3). Total time for T rounds:

O(Td3).
▶ For high-dimensional features (d ≫ 1), this is impractical.

Solution: Rank-One Updates
▶ Recall that At = At−1 + xtx

⊤
t .

▶ We can update the inverse matrix Pt = A−1
t directly using the

Sherman-Morrison formula:

Pt = Pt−1 −
Pt−1xtx

⊤
t Pt−1

1 + x⊤t Pt−1xt

▶ This reduces the cost to O(d2) per step.
▶ This trick is called Recursive Least Squares (RLS).

Invented by Gauss in early 1800s?
15 / 20

Final remarks

▶ We studied online ridge, using exp-concavity, because this
works very nicely under the assumption that responses
(rewards) are [0, 1] valued.

▶ O(d logT) regret turns out to be minimax.

▶ With ϵ-greedy: yields Õ(d1/3T 2/3(logT)1/3) regret for CB.

More advanced topics:

▶ There is a well-known variant of online ridge called the
Vovk-Azoury-Warmuth (VAW) forecaster. It has better
constant factors, and if yt are drawn from an unbounded
domain, VAW is more elegant than online ridge.

▶ VAW is tied to Vovk’s Aggregating Algorithm and related
concept of “mixability” (more general/sophisticated concept
than exp-concavity). See textbook.

16 / 20

extra slides

17 / 20

Why is the rank-one update true? (Intuition)

We expect (A+ uvT)−1 may be similar to A−1.
The Sherman-Morrison formula gives the exact correction:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u

To motivate this, observe in the scalar case that

1

a+ uv
=

1

a
− uv

a(a+ uv)

which is easy to check.

18 / 20

Verification of Sherman-Morrison (Part 1)

To prove (A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1+v⊤A−1u
, we multiply the matrix

by the claimed inverse and check if we get I .

Let γ = 1 + v⊤A−1u (a scalar) and B = A−1 − A−1uv⊤A−1

γ .

(A+ uv⊤)B = (A+ uv⊤)

(
A−1 − A−1uv⊤A−1

γ

)
= AA−1 − AA−1uv⊤A−1

γ
+ uv⊤A−1 − uv⊤A−1uv⊤A−1

γ

= I − uv⊤A−1

γ
+ uv⊤A−1 − u(v⊤A−1u)v⊤A−1

γ

Key Observation: The term in the middle (v⊤A−1u) is exactly
the scalar (γ − 1).

19 / 20

Verification of Sherman-Morrison (Part 2)
Continuing from the previous slide, we substitute v⊤A−1u = γ − 1:

(A+ uv⊤)B = I + uv⊤A−1 −
(
uv⊤A−1 + u(γ − 1)v⊤A−1

γ

)
Factor out uv⊤A−1 in the numerator:

= I + uv⊤A−1 −
(
u(1 + γ − 1)v⊤A−1

γ

)
= I + uv⊤A−1 −

(
γuv⊤A−1

γ

)
= I + uv⊤A−1 − uv⊤A−1

= I ■

Since the product is the Identity matrix, the formula for the inverse
is correct.

20 / 20

