DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 9: The Online Ridge
Forecaster

Instructor: Frederic Koehler

References

Cesa-Bianchi and Lugosi, Chapters 3 and 11.

2/20

Recap

We saw how to use e-Greedy to reduce contextual bandits to
online prediction /forecasting/learning (with squared loss).

For finite classes, we saw how to solve online prediction (even
in the “adversarial” setting with no probabilities involved)
using multiplicative updates. We showed how to derive the
algorithm via a simple Bayesian model.

For large/infinite classes, we can forecast with low regret by
discretizing the function class (e-net argument), using the
log | F| scaling of multiplicative weights.

However, this is often not algorithmically practical.

For a “real world" setting like linear models, can we find a
faster forecasting strategy?

3/20

From Finite to Infinite Experts
Recap: Finite Experts
> We had K discrete experts.
» Prior: Uniform 1/K.
» Algorithm: Exponential Weights (Posterior Mean).
> Regret: O(log K).

New Setting: Linear Experts
> Experts are now vectors u € RY.
> At step t, we see feature vector x; € R.
» Expert u predicts £,(t) = u' x;.

» Goal: Compete with the best fixed vector u*:

T

. T2
min — U X
oY ;:1(% t)

4/20

The Bayesian Linear Model

We apply the same Bayesian strategy: Predict the Posterior Mean.

1. The Prior (Gaussian): Instead of a uniform prior, we place a
Gaussian prior on the weight vector u, centered at 0 with variance
parameter a > O:

u~ N(0,al)
u 2
p(u) o< exp (—’2!>

2. The Likelihood (Gaussian): We model the data generation as
linear with Gaussian noise (variance ?):

Ve | xe,u ~ /\/'(uTxt, o?)

(ve — ux)?)

p(ye | x¢, u) o< exp (— 52

5/20

Deriving the Posterior

After observing data Dy—1 = {(x1,y1), ..., (Xe—1,¥t—1)}, the
posterior p(u | Dy_1) is proportional to Prior x Likelihoods.

The exponent looks like:

-1
_1 [Jul® n tz: (vs — UTX5)2
2 a — o2

This is a quadratic form in u, meaning the posterior is also
Gaussian:

u ’ Dy~ N(Ht—lyzt—l)

The posterior mean is a ridge regression estimator (next slide).

6/20

Online Ridge: Predict the Posterior Mean

We define the correlation matrix A;_1 (inverse covariance):

02 t—1
T
Atf]_ = ?I + E XsXs
s=1

The mean of the posterior p;—1 minimizes the Ridge objective:

2 t—1
. g
jie—1 = argmin <aHUH2 +> (v — usz)2>

s=1

The Algorithm (Online Ridge Forecaster)
At time t:

1. Receive x;.

2. Predict y; = pllxt.

3. Receive y;.

4. Compute p (updated Ridge solution).

7/20

Regret Bound

We analyze the regret against any fixed comparator u.

Theorem (Regret of Ridge Forecaster)

Let A = 02/a and suppose o2 > 1. The cumulative squared loss of
the algorithm satisfies:

T T
> Ge—ye) = (uTxe—ye)* < Mu|*+0? log det(Ar)—0? log det(A/)
t=1 t=1

Simplification: This bound is best when we take 02 = 1 (same as
in finite case). Suppose for simplicity/by rescaling that ||x;|| <1
always, then

d
logdet A = > " log Ai(Ar) < dlog(A+ T)
i=1
Take A = 1; the regret against ||u|| < R is O(R? + dlog(T +1)).

8/20

Recall: Exp-Concavity
Like last time, to analyze the regret we we use the property of
exp-concavity.

Exp-concavity of Squared Loss
For domains [0, 1] and any outcome y € [0, 1], the function:

G(x) = exp (—n(x — y)?)

is concave in x provided that n < %

We will apply this with 7 = 1/202, in which case the condition
n < 1/2 becomes o2 > 1.

9/20

Exp-concavity: posterior mean dominates posterior

Since our algorithm predicts the posterior mean

o T
)/(t) = IEu~p(u\]—'t71)[u X(t)]7
by exp-concavity and Jensen's inequality, we know that:

E, p(u)Fr_1) efn(uTx(t)*Y(t)f] < e*n(}?(t)fy(t))2
~ L <
In English: the likelihood of the response y under the model

N(y,1/2n) is always higher than the likelihood under the posterior
[N(uTx,1/2n)dp(u | Fr-1). Taking logs,

108 By p(ul oy | € " OO < _p(p(t) — y(2))?

Note: we can improve on the posterior because in reality y € [0, 1],
but the posterior does not know this, it is based on a Gaussian
assumption. Here the misspecification of our model is “useful”.

10/20

Potential analysis

Follow the pattern from last time:

> If the data is fit well by a some linear model u € R, the
log-likelihood of the data under the Bayesian model is high.

> By exp-concavity, the log-likelihood of the data under the
posterior mean model is always better !

» Log-likelihood under the posterior mean model is the same as
squared loss.

Now we go through these steps in detail and see how it yields the
regret bound.

11/20

Proof via Potential Functions (Step 1)

We define the Potential Function as the negative log-marginal
likelihood (normalizing constant):

(s—u x)? [lu]?
¢, = — 210 e 22 e 22 d

(Note the scaling factor 02 to match the squared loss scale).

This integral can be computed exactly for Gaussians:

L (S le—uTe)2 A ul?) [(270?)d 1 i, L)
/ e =\ det(Ad) €

where L¢(u) is the cumulative Ridge loss.

12/20

Proof via Potential (Step 2)

Taking the log of the integral:
o? 5
o, = 5 log det(A¢) + m|n Aul]© + Z —u'x)? | + const

On the other hand, consider the incremental update ¢, — ®,_;.
By Bayes rule, the difference is given by the log likelihood of the
observation

1.
O, — D¢y = —0”log Pyt | x¢, De—1) > 5()/15 —)
where we used 7 = 1/202 and the last inequality was the key

conclusion from exp-concavity.

13/20

Proof via Potential (Conclusion)
Telescoping the last inequality, we find

T

O 00 = D~ 0c 1) > 2 D (5

t=1 t=1

We also computed that
o? 1 L
b1 = > log det(AT)—i—muin 5 ()\||UH2 + z;(ys — UTX5)2> + const
s=
and similarly &9 = %2 log det(Ap) + const. So indeed,

T U 02
> G —ye) < = logdet(Ar) — - log det(A)

t=1
+ min 2 (AHUF + Z —u X5)2>

s=1

l\.)\r—\

14 /20

An algorithmic improvement
The Computational Bottleneck

» In the naive implementation, computing the posterior mean
pe = Ay yexs requires inverting a d x d matrix at
every step.

> Naive inversion takes O(d%). Total time for T rounds:
O(Td3).

» For high-dimensional features (d > 1), this is impractical.

Solution: Rank-One Updates
» Recall that A; = A;_1 + thtT.
> We can update the inverse matrix P = At_1 directly using the
Sherman-Morrison formula:
Pt—lxtXtTPt—l
1 +X;rPt—1Xt
» This reduces the cost to O(d?) per step.

» This trick is called Recursive Least Squares (RLS).
Invented by Gauss in early 1800s?

Pt:Pt—l—

15/20

Final remarks

» We studied online ridge, using exp-concavity, because this
works very nicely under the assumption that responses
(rewards) are [0, 1] valued.

» O(dlog T) regret turns out to be minimax.

> With e-greedy: yields O(d/3 T2/3(log T)/3) regret for CB.

More advanced topics:

» There is a well-known variant of online ridge called the
Vovk-Azoury-Warmuth (VAW) forecaster. It has better
constant factors, and if y; are drawn from an unbounded
domain, VAW is more elegant than online ridge.

> VAW is tied to Vovk's Aggregating Algorithm and related
concept of “mixability” (more general/sophisticated concept
than exp-concavity). See textbook.

16 /20

extra slides

17/20

Why is the rank-one update true? (Intuition)

We expect (A+ uv’)~! may be similar to A7L.
The Sherman-Morrison formula gives the exact correction:

A luvTAL
A Ty—1 — A—l A A
(Atuv) 1+ vTA-1y

To motivate this, observe in the scalar case that

1 1 uv

at+uv a ala+uwv)

which is easy to check.

18/20

Verification of Sherman-Morrison (Part 1)

1, TA- . :
To prove (A+uv') L =A"1 % we multiply the matrix

by the claimed inverse and check if we get /.

Lety=1+v Aty (ascalar)and B=A"1 - %TAA-

A—l TA—l
(A+uw)B=(A+uv") (Al - uv)

Y

1 AA Ly TAE LA uv T A~tuvTAE
Y Y

uv' AL L TA u(vT A~ tu)v T AL
uv -

v Y

= AA™

=/ —

Key Observation: The term in the middle (v A=!u) is exactly
the scalar (y — 1).

19/20

Verification of Sherman-Morrison (Part 2)
Continuing from the previous slide, we substitute v A=ty = v — 1:

TA—l -1 TA—l
(A+IJVT)B:/+UVTA71— <UV +U(’Y)V >

Y

Factor out uv' A1 in the numerator:

1 —1)vTA1
=/+uw' A= (u(it})V)
o

TAfl
e w A (’Y)
0

—J+uw Al —pw'Al
=/ N

Since the product is the ldentity matrix, the formula for the inverse

is correct.
20/20

