

DATA 37200: Learning, Decisions, and Limits
(Winter 2026)

Lecture 9: The Online Ridge Forecaster

Instructor: Frederic Koehler

References

Cesa-Bianchi and Lugosi, Chapters 3 and 11.

Recap

- ▶ We saw how to use ϵ -Greedy to reduce contextual bandits to online prediction/forecasting/learning (with squared loss).
- ▶ For finite classes, we saw how to solve online prediction (even in the “adversarial” setting with no probabilities involved) using multiplicative updates. We showed how to derive the algorithm via a simple Bayesian model.
- ▶ For large/infinite classes, we can forecast with low regret by discretizing the function class (ϵ -net argument), using the $\log |\mathcal{F}|$ scaling of multiplicative weights.
- ▶ However, this is often not **algorithmically** practical.
- ▶ For a “real world” setting like linear models, can we find a faster forecasting strategy?

From Finite to Infinite Experts

Recap: Finite Experts

- ▶ We had K discrete experts.
- ▶ Prior: Uniform $1/K$.
- ▶ Algorithm: Exponential Weights (Posterior Mean).
- ▶ Regret: $O(\log K)$.

New Setting: Linear Experts

- ▶ Experts are now vectors $u \in \mathbb{R}^d$.
- ▶ At step t , we see feature vector $x_t \in \mathbb{R}^d$.
- ▶ Expert u predicts $f_u(t) = u^\top x_t$.
- ▶ **Goal:** Compete with the best fixed vector u^* :

$$\min_{u \in \mathbb{R}^d} \sum_{t=1}^T (y_t - u^\top x_t)^2$$

The Bayesian Linear Model

We apply the same Bayesian strategy: *Predict the Posterior Mean.*

1. The Prior (Gaussian): Instead of a uniform prior, we place a Gaussian prior on the weight vector u , centered at 0 with variance parameter $a > 0$:

$$u \sim \mathcal{N}(\mathbf{0}, aI)$$

$$p(u) \propto \exp\left(-\frac{\|u\|^2}{2a}\right)$$

2. The Likelihood (Gaussian): We model the data generation as linear with Gaussian noise (variance σ^2):

$$y_t | x_t, u \sim \mathcal{N}(u^\top x_t, \sigma^2)$$

$$p(y_t | x_t, u) \propto \exp\left(-\frac{(y_t - u^\top x_t)^2}{2\sigma^2}\right)$$

Deriving the Posterior

After observing data $D_{t-1} = \{(x_1, y_1), \dots, (x_{t-1}, y_{t-1})\}$, the posterior $p(u | D_{t-1})$ is proportional to Prior \times Likelihoods.

The exponent looks like:

$$-\frac{1}{2} \left(\frac{\|u\|^2}{a} + \sum_{s=1}^{t-1} \frac{(y_s - u^\top x_s)^2}{\sigma^2} \right)$$

This is a quadratic form in u , meaning the posterior is also Gaussian:

$$u | D_{t-1} \sim \mathcal{N}(\mu_{t-1}, \Sigma_{t-1})$$

The posterior mean is a **ridge regression** estimator (next slide).

Online Ridge: Predict the Posterior Mean

We define the correlation matrix A_{t-1} (inverse covariance):

$$A_{t-1} = \frac{\sigma^2}{a} I + \sum_{s=1}^{t-1} x_s x_s^\top$$

The mean of the posterior μ_{t-1} minimizes the Ridge objective:

$$\mu_{t-1} = \arg \min_u \left(\frac{\sigma^2}{a} \|u\|^2 + \sum_{s=1}^{t-1} (y_s - u^\top x_s)^2 \right)$$

The Algorithm (Online Ridge Forecaster)

At time t :

1. Receive x_t .
2. Predict $\hat{y}_t = \mu_{t-1}^\top x_t$.
3. Receive y_t .
4. Compute μ_t (updated Ridge solution).

Regret Bound

We analyze the regret against any fixed comparator u .

Theorem (Regret of Ridge Forecaster)

Let $\lambda = \sigma^2/a$ and suppose $\sigma^2 \geq 1$. The cumulative squared loss of the algorithm satisfies:

$$\sum_{t=1}^T (\hat{y}_t - y_t)^2 - \sum_{t=1}^T (u^\top x_t - y_t)^2 \leq \lambda \|u\|^2 + \sigma^2 \log \det(A_T) - \sigma^2 \log \det(\lambda I)$$

Simplification: This bound is best when we take $\sigma^2 = 1$ (same as in finite case). Suppose for simplicity/by rescaling that $\|x_t\| \leq 1$ always, then

$$\log \det A_T = \sum_{i=1}^d \log \lambda_i(A_T) \leq d \log(\lambda + T)$$

Take $\lambda = 1$; the regret against $\|u\| \leq R$ is $O(R^2 + d \log(T + 1))$.

Recall: Exp-Concavity

Like last time, to analyze the regret we use the property of **exp-concavity**.

Exp-concavity of Squared Loss

For domains $[0, 1]$ and any outcome $y \in [0, 1]$, the function:

$$G(x) = \exp(-\eta(x - y)^2)$$

is concave in x provided that $\eta \leq \frac{1}{2}$.

We will apply this with $\eta = 1/2\sigma^2$, in which case the condition $\eta \leq 1/2$ becomes $\sigma^2 \geq 1$.

Exp-concavity: posterior mean dominates posterior

Since our algorithm predicts the posterior mean

$$\hat{y}(t) = \mathbb{E}_{u \sim p(u | \mathcal{F}_{t-1})} [u^T x(t)],$$

by exp-concavity and Jensen's inequality, we know that:

$$\mathbb{E}_{u \sim p(u | \mathcal{F}_{t-1})} \left[e^{-\eta(u^T x(t) - y(t))^2} \right] \leq e^{-\eta(\hat{y}(t) - y(t))^2}$$

In English: the likelihood of the response y under the model $N(\hat{y}, 1/2\eta)$ is always higher than the likelihood under the posterior $\int N(u^T x, 1/2\eta) dp(u | \mathcal{F}_{t-1})$. Taking logs,

$$\log \mathbb{E}_{u \sim p(u | \mathcal{F}_{t-1})} \left[e^{-\eta(u^T x(t) - y(t))^2} \right] \leq -\eta(\hat{y}(t) - y(t))^2$$

Note: we can improve on the posterior because in reality $y \in [0, 1]$, but the posterior does not know this, it is based on a Gaussian assumption. Here the misspecification of our model is “useful”.

Potential analysis

Follow the pattern from last time:

- ▶ If the data is fit well by a some linear model $u \in \mathbb{R}^d$, the **log-likelihood** of the data under the Bayesian model is high.
- ▶ By exp-concavity, the **log-likelihood** of the data under the posterior mean model is always better !
- ▶ **Log-likelihood** under the posterior mean model is the same as **squared loss**.

Now we go through these steps in detail and see how it yields the regret bound.

Proof via Potential Functions (Step 1)

We define the **Potential Function** as the negative log-marginal likelihood (normalizing constant):

$$\Phi_t = -\sigma^2 \log \left(\int_{\mathbb{R}^d} \prod_{s=1}^t e^{-\frac{(y_s - u^\top x_s)^2}{2\sigma^2}} \cdot e^{-\frac{\|u\|^2}{2\sigma^2}} du \right)$$

(Note the scaling factor σ^2 to match the squared loss scale).

This integral can be computed exactly for Gaussians:

$$\int e^{-\frac{1}{2\sigma^2}(\sum(y_s - u^\top x_s)^2 + \lambda \|u\|^2)} du = \sqrt{\frac{(2\pi\sigma^2)^d}{\det(A_t)}} e^{-\frac{1}{2\sigma^2} \min_u L_t(u)}$$

where $L_t(u)$ is the cumulative Ridge loss.

Proof via Potential (Step 2)

Taking the log of the integral:

$$\Phi_t = \frac{\sigma^2}{2} \log \det(A_t) + \min_u \frac{1}{2} \left(\lambda \|u\|^2 + \sum_{s=1}^t (y_s - u^\top x_s)^2 \right) + \text{const}$$

On the other hand, consider the incremental update $\Phi_t - \Phi_{t-1}$. By Bayes rule, the difference is given by the log likelihood of the observation

$$\Phi_t - \Phi_{t-1} = -\sigma^2 \log P(y_t \mid x_t, D_{t-1}) \geq \frac{1}{2} (\hat{y}_t - y_t)^2$$

where we used $\eta = 1/2\sigma^2$ and the last inequality was the key conclusion from exp-concavity.

Proof via Potential (Conclusion)

Telescoping the last inequality, we find

$$\Phi_T - \Phi_0 = \sum_{t=1}^T (\Phi_t - \Phi_{t-1}) \geq \frac{1}{2} \sum_{t=1}^T (\hat{y}_t - y_t)^2.$$

We also computed that

$$\Phi_T = \frac{\sigma^2}{2} \log \det(A_T) + \min_u \frac{1}{2} \left(\lambda \|u\|^2 + \sum_{s=1}^T (y_s - u^\top x_s)^2 \right) + \text{const}$$

and similarly $\Phi_0 = \frac{\sigma^2}{2} \log \det(A_0) + \text{const}$. So indeed,

$$\begin{aligned} \frac{1}{2} \sum_{t=1}^T (\hat{y}_t - y_t)^2 &\leq \frac{\sigma^2}{2} \log \det(A_T) - \frac{\sigma^2}{2} \log \det(\lambda I) \\ &\quad + \min_u \frac{1}{2} \left(\lambda \|u\|^2 + \sum_{s=1}^t (y_s - u^\top x_s)^2 \right) \end{aligned}$$

An algorithmic improvement

The Computational Bottleneck

- ▶ In the naive implementation, computing the posterior mean $\mu_t = A_t^{-1} \sum_{s=1}^t y_s x_s$ requires inverting a $d \times d$ matrix at every step.
- ▶ Naive inversion takes $O(d^3)$. Total time for T rounds: $O(Td^3)$.
- ▶ For high-dimensional features ($d \gg 1$), this is impractical.

Solution: Rank-One Updates

- ▶ Recall that $A_t = A_{t-1} + x_t x_t^\top$.
- ▶ We can update the inverse matrix $P_t = A_t^{-1}$ directly using the **Sherman-Morrison formula**:

$$P_t = P_{t-1} - \frac{P_{t-1} x_t x_t^\top P_{t-1}}{1 + x_t^\top P_{t-1} x_t}$$

- ▶ This reduces the cost to $O(d^2)$ per step.
- ▶ This trick is called **Recursive Least Squares (RLS)**. Invented by Gauss in early 1800s?

Final remarks

- ▶ We studied online ridge, using exp-concavity, because this works very nicely under the assumption that responses (rewards) are $[0, 1]$ valued.
- ▶ $O(d \log T)$ regret turns out to be minimax.
- ▶ With ϵ -greedy: yields $\tilde{O}(d^{1/3} T^{2/3} (\log T)^{1/3})$ regret for CB.

More advanced topics:

- ▶ There is a well-known variant of online ridge called the Vovk-Azoury-Warmuth (VAW) forecaster. It has better constant factors, and if y_t are drawn from an unbounded domain, VAW is more elegant than online ridge.
- ▶ VAW is tied to Vovk's Aggregating Algorithm and related concept of "mixability" (more general/sophisticated concept than exp-concavity). See textbook.

extra slides

Why is the rank-one update true? (Intuition)

We expect $(A + uv^\top)^{-1}$ may be similar to A^{-1} .

The **Sherman-Morrison formula** gives the exact correction:

$$(A + uv^\top)^{-1} = A^{-1} - \frac{A^{-1}uv^\top A^{-1}}{1 + v^\top A^{-1}u}$$

To motivate this, observe in the scalar case that

$$\frac{1}{a + uv} = \frac{1}{a} - \frac{uv}{a(a + uv)}$$

which is easy to check.

Verification of Sherman-Morrison (Part 1)

To prove $(A + uv^\top)^{-1} = A^{-1} - \frac{A^{-1}uv^\top A^{-1}}{1+v^\top A^{-1}u}$, we multiply the matrix by the claimed inverse and check if we get I .

Let $\gamma = 1 + v^\top A^{-1}u$ (a scalar) and $B = A^{-1} - \frac{A^{-1}uv^\top A^{-1}}{\gamma}$.

$$\begin{aligned}(A + uv^\top)B &= (A + uv^\top) \left(A^{-1} - \frac{A^{-1}uv^\top A^{-1}}{\gamma} \right) \\ &= AA^{-1} - \frac{AA^{-1}uv^\top A^{-1}}{\gamma} + uv^\top A^{-1} - \frac{uv^\top A^{-1}uv^\top A^{-1}}{\gamma} \\ &= I - \frac{uv^\top A^{-1}}{\gamma} + uv^\top A^{-1} - \frac{u(v^\top A^{-1}u)v^\top A^{-1}}{\gamma}\end{aligned}$$

Key Observation: The term in the middle ($v^\top A^{-1}u$) is exactly the scalar ($\gamma - 1$).

Verification of Sherman-Morrison (Part 2)

Continuing from the previous slide, we substitute $v^\top A^{-1}u = \gamma - 1$:

$$(A + uv^\top)B = I + uv^\top A^{-1} - \left(\frac{uv^\top A^{-1} + u(\gamma - 1)v^\top A^{-1}}{\gamma} \right)$$

Factor out $uv^\top A^{-1}$ in the numerator:

$$\begin{aligned} &= I + uv^\top A^{-1} - \left(\frac{u(1 + \gamma - 1)v^\top A^{-1}}{\gamma} \right) \\ &= I + uv^\top A^{-1} - \left(\frac{\gamma uv^\top A^{-1}}{\gamma} \right) \\ &= I + uv^\top A^{-1} - uv^\top A^{-1} \\ &= I \quad \blacksquare \end{aligned}$$

Since the product is the Identity matrix, the formula for the inverse is correct.