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Reminder: 


Ising models, 


sampling,


and all that



Ising Model

pJ,h(x) ∝ exp ( 1
2

⟨x, Jx⟩ + ⟨h, x⟩), x ∈ {±1}n

 is an arbitrary symmetric interaction matrix, and 
 is a vector of bias/external field


General class including models of magnetism, spin glasses, 
neurons, social networks, Bayesian statistics…


Maximum entropy distribution. Analogue of Gaussian.

J : n × n
h ∈ ℝn
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Sampling and Statistical Inference

Sampling: given parameters  generate  


Many connections to statistical inference.


Bayesian posteriors often Ising.


Ising is the posterior on  given 
 for some  


Sampling used to optimally estimate J,h from 
samples (via MLE.)

J, h X ∼ pJ,h

X ∼ Uni{±1}n

Y = X + N(0,Σ) Σ, Y

Alternatives to MLE (maximum likelihood 
estimation) are usually not as accurate…

stochastic block model

(community detection) 


posterior is Ising



How to sample? Typically MCMC. Especially nice is the Gibbs sampler/Glauber dynamics:


Let initial  be arbitrary.


 For t = 1 to T :


Pick  randomly and resample 


But: it is hard to know if it is working! Sometimes it doesn’t work!


How many steps to mix to correct distribution? Can be exponential time…


Some Ising models are NP-hard to sample from. 

X ∈ {±1}n

i ∈ [n] Xi ∣ X∼i



What can we say theoretically?



Rapid mixing for  (Dobrushin).


When : bottleneck emerges between two clusters of spins. Gibbs sampler is 
exponentially slow to mix (runtime )…

β < 1

β > 1
cn

Useful example: Curie-Weiss model


p(x) =
1
Z

exp
β
2n (∑

i

xi)
2

1
n ∑

i

xi ≈ m*
1
n ∑

i

xi ≈ − m*



Gibbs Sampler at High Temperature

Rapid mixing of Gibbs/Glauber for “small”  is a generic phenomena. 

Lots of work for many years…


Theorem […, BB ’19, EKZ ’21, AJKPV ’22]: if , then Gibbs 
sampler mixes rapidly. 


Not true for “larger” J due to bottleneck (previous slide). What are the 
alternatives to Gibbs?


J

λmax(J) − λmin(J) < 1



Variational Inference Picture

Variational inference: approximate by a simpler distribution. Popular alternative 
to MCMC, comes from statistical physics.


When , Curie-Weiss model is close to a mixture of two product measures 
centered at fixed points of “mean-field equation” 

β > 1
m* = tanh(βm* + h)

1
n ∑

i

xi ≈ m*
1
n ∑

i

xi ≈ − m*



Structure of low-rank Ising models

Rigorous Naive Mean-Field Approximation […, Eldan-Gross 
’18, Austin ’19,…] shows approximate mixture of product 
decomposition for all low-rank .  


If rank J =  then Ising  mixture of  product 
measures (with means  satisfying ).


Only a rough approximation (  in Wasserstein). 


Not constructive (unless you use our results!)

J

o(n) ≈ 2o(n)

m m ≈ tanh(Jm + h)

o(n)

m1 ≈ tanh(Jm1 + h)

m2 ≈ tanh(Jm2 + h)

m3 ≈ tanh(Jm3 + h)

m4 ≈ tanh(Jm4 + h)

m5 ≈ tanh(Jm5 + h)

pJ,h ≈

Mixture of products



MCMC versus Variational Inference

Variational inference world


GOOD: makes sense in multimodal/low-temperature settings.


BAD: only approximates the true distribution, structural results are not algorithmic.


MCMC world


GOOD: when it works, it really samples from the true distribution. 


BAD: Gibbs sampler fails in multimodal case. Unclear how to fix…



Theorem (this work): new sampler for approximately low-rank Ising models! 
Runtime parameterized by (# of spectral outliers/“threshold rank” of J).


Runtime . Close to lower bound from ETH [JKR ’19].

Negative eigenvalues must be  in size. Large negative eigenvalue problem is NP-hard.

nO(#outliers)

O(1)

MCMC meets Variational Inference

           
J = JLR + Jsmall λmax(Jsmall) − λmin(Jsmall) < 1

spec(J)

Size one interval spectral outliers



Proof Ideas



Key: a new structural result

We decompose the Ising model as a 
mixture of high-temperature Ising 
models:  with  small.

Unlike mixture of product measures: 
decomposition is (1) constructive, and (2) 
very accurate.

Enables polynomial-time sampling of the 
real distribution! 

(Jeff, hj)M
j=1 ∥Jeff∥OP

Ising (Jeff, h1)

Ising 
(Jeff, h2)

Ising (Jeff, h3)

Ising (Jeff, h4)

pJ,h ≈

Mixture of high-
temperature models!



Two key principles

Size one interval (containing zero) O(1) positive outliers

spec(J)

O(1) negative outliers

II. Eliminate negative eigenvalues:

replace by an “effective field”.

I. Eliminate positive eigenvalues:

 low-dimensional decomposition


 



Step I: positive eigenvalues

Suppose  (LR = low rank) with  PSD and J’ small. 


Goal: find a mixing distribution q over a low-dimensional space so that approximately,

J = JLR + J′￼ JLR

pJ,h ≈ ∫ pJ′￼,h+b q(b) db
pJ,h+b

Mixture of 

high-temperature Ising


with weights q(b)



Hubbard-Stratonovich transform [Hubbard ’58]. Quadratic to linear reduction:


Using  yields mixture decomposition:J = J′￼+ JLR

e⟨x,JLRx⟩/2 =
1

(2π)d/2 ∫span(JLR)
e⟨J1/2

LR x,z⟩ e−∥z∥2/2 dz

e⟨x,Jx⟩/2 ∝ ∫span(JLR)
e⟨x,J′￼x⟩/2+⟨J1/2

LR x,z⟩ e−∥z∥2/2 dz

∝ ∫span(JLR)
pJ′￼,J1/2

LR z(x) ZJ′￼,J1/2
LR z e−∥z∥2/2 dz

q(z)



Two key principles

Size one interval O(1) positive outliers

spec(J)

O(1) negative outliers

II. Eliminate negative eigenvalues:

replace by an “effective field”.

I. Eliminate positive eigenvalues:

 low-dimensional decomposition


(sketch done!)

 



Step II: handling negative eigenvalues

Trick: write  with  and run SGD on


Why? Postulate that  concentrates near deterministic quantity  .


Then  so     (kill negative eigenvalues)


In particular                    (so )


FACTS: (1) G has a critical point, (2) at any critical point  for rejection sampling

J = J+ − J− J+, J− ⪰ 0

J−x J− μ

⟨x, Jx⟩ ≈ ⟨x, J+x⟩ − ⟨x, J−μ⟩ PJ,h ≈ PJ+,h−J−μ

J−μ ≈ 𝔼PJ,h
[J−x] ≈ 𝔼PJ+,h−J−μ

[J−x] ∇G(μ) ≈ 0

PJ,h ≈ PJ+,h−J−μ

G(μ) := log 𝔼PJ+,h
[e⟨μ,−J−x⟩] + ⟨μ, J−μ⟩/2



The Simplified Algorithm

Now we know there exists an approximate mixture decomposition into “hot” models:


Yields a natural sampling algorithm:


(1) Riemann integration for integral, (2) SGD+Glauber to compute critical point 
, (3) Glauber dynamics for , (4) rejection sampling.


Using this gives suboptimal  runtime in error . We can get  
runtime by designing a “simulated tempering” chain. (see paper)

μ(b) pJ′￼

poly(1/ϵ) ϵ log(1/ϵ)

pJ,h(x) ≈ ∫ pJ′￼,h+b−J−μ(b)(x) q(b) db ∥J′￼∥OP ≤ 1

pJ′￼,h′￼



Example Application



Task: Dense MAX-CUT

Input : adjacency matrix A of a graph on n vertices with  edges


Goal: find a set  to maximize size of cut 


NP hard but admits a PTAS [AKK ’92, dlV '92].

Θ(n2)

S ⊆ [n] #{(u, v) ∈ E : u ∈ S, v ∈ SC}

S SC



“Statistical Physicsy” Approach

Let .              ( (1/n) * Dense MAX-CUT so OPT is  )


Gibbs measure at inverse temperature :


Exercise (typical sample is a -apx to OPT):          


Exercise (few large eigenvalues):

OPT :=
|E |
2n

+ max
x∈{±1}n

−1
4n

⟨x, Ax⟩ Θ(n)

β ≥ 0

(1 + 1/β)

pβ(x) ∝ exp ( −β
4n

⟨x, Ax⟩)

1
n2

n

∑
i=1

λi(A)2 = O(1)

 OPT ≥
|E |
2βn

+ 𝔼pβ [ −1
4n

⟨x, Ax⟩] ≥ OPT −
n log 2

β



Approximation from Sampling

CORR: for any , can sample Gibbs measure in time  


Yields a  approximation to Dense MAX-CUT.


Matches  runtime [AKK ’92] for Dense MAX-CUT but now get all near-optimal cuts!


No computational phase transition in  ! Sampling easier than optimization !


Q: what other PTAS’s can be found by “just” sampling the Gibbs measure? 

β ≥ 0 pβ(x) ∝ exp ( −β
4n

⟨x, Ax⟩) nO(β2)

(1 + 1/β)

nO(1/ϵ2)

β



Conclusion

We developed a new algorithm which provably samples from all “approximately 
low rank” Ising models.


Many other interesting applications:  Hopfield networks, Ferromagnetic SK, 
Contextual SBM, mixture models, Ising models on expanders, …


Variational inference ideas help us predict which problems are tractable.


What aspects of this story extend beyond Ising ?



Thanks!


