When MCMC Meets Variational Methods

Frederic Koehler (Stanford => UChicago)
Holden Lee (JHU)
Andrej Risteski (CMU)
Reminder:
Ising models, sampling, and all that
Ising Model

\[p_{J,h}(x) \propto \exp \left(\frac{1}{2} \langle x, Jx \rangle + \langle h, x \rangle \right), \quad x \in \{\pm 1\}^n \]

- \(J : n \times n \) is an arbitrary symmetric interaction matrix, and \(h \in \mathbb{R}^n \) is a vector of bias/external field
- General class including models of magnetism, spin glasses, neurons, social networks, Bayesian statistics...
- Maximum entropy distribution. Analogue of Gaussian.
Sampling and Statistical Inference

- **Sampling**: given parameters J, h generate $X \sim p_{J,h}$
- Many connections to statistical inference.
- **Bayesian** posteriors often Ising.
 - Ising is the posterior on $X \sim \text{Uni}\{\pm 1\}^n$ given $Y = X + N(0, \Sigma)$ for some Σ, Y
- Sampling used to **optimally** estimate J, h from samples (via MLE.)

Alternatives to MLE (maximum likelihood estimation) are usually not as accurate...
How to sample? Typically MCMC. Especially nice is the **Gibbs sampler/Glauber dynamics**:

- Let initial $X \in \{\pm 1\}^n$ be arbitrary.
- For $t = 1$ to T:
 - Pick $i \in [n]$ randomly and resample $X_i \mid X_{\sim i}$

But: it is **hard** to know if it is working! Sometimes it doesn’t work!

- How many steps to **mix to correct distribution**? Can be exponential time…
- Some Ising models are NP-hard to sample from.
What can we say theoretically?
Useful example: Curie-Weiss model

\[p(x) = \frac{1}{Z} \exp \left(\frac{\beta}{2n} \left(\sum_i x_i \right)^2 \right) \]

- Rapid mixing for \(\beta < 1 \) (Dobrushin).

- When \(\beta > 1 \): bottleneck emerges between two clusters of spins. Gibbs sampler is exponentially slow to mix (runtime \(c^n \))…

\[\frac{1}{n} \sum_i x_i \approx -m^* \]

\[\frac{1}{n} \sum_i x_i \approx m^* \]
Gibbs Sampler at High Temperature

Rapid mixing of Gibbs/Glauber for “small” J is a generic phenomena. Lots of work for many years...

Theorem [...] BB ’19, EKZ ’21, AJKPV ’22]: if $\lambda_{\text{max}}(J) - \lambda_{\text{min}}(J) < 1$, then Gibbs sampler mixes rapidly.

Not true for “larger” J due to bottleneck (previous slide). What are the alternatives to Gibbs?
Variational Inference Picture

- Variational inference: approximate by a simpler distribution. Popular alternative to MCMC, comes from statistical physics.

- When $\beta > 1$, Curie-Weiss model is close to a mixture of two product measures centered at fixed points of “mean-field equation” $m^* = \tanh(\beta m^* + h)$
Structure of low-rank Ising models

- Rigorous Naive Mean-Field Approximation [...] shows approximate mixture of product decomposition for all low-rank J.
- If rank $J = o(n)$ then $\text{Ising} \approx \text{mixture of } 2^o(n) \text{ product measures}$ (with means m satisfying $m \approx \tanh(Jm + h)$).
- Only a rough approximation ($o(n)$ in Wasserstein).
- Not constructive (unless you use our results!)
MCMC versus Variational Inference

- **Variational inference world**
 - **GOOD**: makes sense in multimodal/low-temperature settings.
 - **BAD**: only approximates the true distribution, structural results are not algorithmic.

- **MCMC world**
 - **GOOD**: when it works, it really samples from the true distribution.
 - **BAD**: Gibbs sampler fails in multimodal case. Unclear how to fix…
Theorem (this work): new sampler for approximately low-rank Ising models! Runtime parameterized by (# of spectral outliers/“threshold rank” of J).

Negative eigenvalues must be in size. Large negative eigenvalue problem is NP-hard.

\[J = J_{LR} + J_{small} \]

\[\lambda_{\max}(J_{small}) - \lambda_{\min}(J_{small}) < 1 \]

- Runtime \(n^{O(#outliers)} \). Close to lower bound from ETH [JKR ’19].
- Negative eigenvalues must be \(O(1) \) in size. Large negative eigenvalue problem is NP-hard.
Proof Ideas
Key: a new structural result

- We decompose the Ising model as a mixture of high-temperature Ising models: $(J_{\text{eff}}, h^j)^M_{j=1}$ with $\|J_{\text{eff}}\|_{OP}$ small.
- Unlike mixture of product measures: decomposition is (1) constructive, and (2) very accurate.
- Enables polynomial-time sampling of the real distribution!
Two key principles

II. Eliminate negative eigenvalues: replace by an “effective field”.

I. Eliminate positive eigenvalues: low-dimensional decomposition
Step I: positive eigenvalues

- Suppose $J = J_{LR} + J'$ (LR = low rank) with J_{LR} PSD and J' small.

- Goal: find a mixing distribution q over a low-dimensional space so that approximately,

$$p_{J,h} \approx \int p_{J',h+b} q(b) \, db$$

Mixture of high-temperature Ising with weights $q(b)$
Hubbard-Stratonovich transform [Hubbard ’58]. Quadratic to linear reduction:

\[e^{\langle x, J_{LR} x \rangle / 2} = \frac{1}{(2\pi)^{d/2}} \int_{\text{span}(J_{LR})} e^{\langle J_{LR}^{1/2} x, z \rangle} e^{-\|z\|^2/2} \, dz, \]

Using \(J = J' + J_{LR} \) yields mixture decomposition:

\[e^{\langle x, J x \rangle / 2} \propto \int_{\text{span}(J_{LR})} e^{\langle x, J' x \rangle / 2 + \langle J_{LR}^{1/2} x, z \rangle} e^{-\|z\|^2/2} \, dz \]

\[\propto \int_{\text{span}(J_{LR})} p_{J', J_{LR}^{1/2} z}(x) Z_{J', J_{LR}^{1/2} z} e^{-\|z\|^2/2} \, dz \]

\[q(z) \]
Two key principles

spec(J)

I. Eliminate positive eigenvalues: low-dimensional decomposition (sketch done!)

II. Eliminate negative eigenvalues: replace by an “effective field”.
Step II: handling negative eigenvalues

Trick: write \(J = J_+ - J_- \) with \(J_+, J_- \geq 0 \) and run SGD on

\[
G(\mu) := \log \mathbb{E}_{P_{J_+, h}} [e^{\langle \mu, -J_- x \rangle}] + \langle \mu, J_- \mu \rangle / 2
\]

Why? Postulate that \(J_- x \) concentrates near deterministic quantity \(J_- \mu \).

Then \(\langle x, Jx \rangle \approx \langle x, J_+ x \rangle - \langle x, J_- \mu \rangle \) so \(P_{J, h} \approx P_{J_+, h - J_- \mu} \) \(\) (kill negative eigenvalues)

In particular \(J_- \mu \approx \mathbb{E}_{P_{J_+, h}} [J_- x] \approx \mathbb{E}_{P_{J_+, h - J_- \mu}} [J_- x] \) \(\) (so \(\nabla G(\mu) \approx 0 \))

FACTS: (1) \(G \) has a critical point, (2) at any critical point \(P_{J, h} \approx P_{J_+, h - J_- \mu} \) for rejection sampling
Now we know there exists an approximate mixture decomposition into “hot” models:

\[
p_J,h(x) \approx \int p_{J',h+b-J_\mu(b)}(x) q(b) \, db
\]

Yields a natural sampling algorithm:

1. Riemann integration for integral,
2. SGD+Glauber to compute critical point \(\mu(b) \),
3. Glauber dynamics for \(p_J \),
4. rejection sampling.

Using this gives suboptimal \(\text{poly}(1/\epsilon) \) runtime in error \(\epsilon \). We can get \(\log(1/\epsilon) \) runtime by designing a “simulated tempering” chain. (see paper)
Example Application
Task: Dense MAX-CUT

Input: adjacency matrix A of a graph on n vertices with $\Theta(n^2)$ edges

Goal: find a set $S \subseteq [n]$ to maximize size of cut $\#\{(u, v) \in E : u \in S, v \in S^c\}$

NP hard but admits a PTAS [AKK '92, dIV '92].
“Statistical Physics” Approach

- Let \(\text{OPT} := \frac{|E|}{2n} + \frac{1}{4n} \max_{x \in \{\pm 1\}^n} -\langle x, Ax \rangle \). (\(1/n\) * Dense MAX-CUT so \(\text{OPT}\) is \(\Theta(n)\))

- **Gibbs measure** at inverse temperature \(\beta \geq 0\):
 \[
p_\beta(x) \propto \exp \left(\frac{-\beta}{4n} \langle x, Ax \rangle \right)
 \]

- Exercise (typical sample is a \((1 + 1/\beta)\)-apx to \(\text{OPT}\)):
 \[
 \text{OPT} \geq \frac{|E|}{2\beta n} + \mathbb{E}_{p_\beta} \left[-\frac{1}{4n} \langle x, Ax \rangle \right] \geq \text{OPT} - \frac{n \log 2}{\beta}
 \]

- Exercise (few large eigenvalues):
 \[
 \frac{1}{n^2} \sum_{i=1}^{n} \lambda_i(A)^2 = O(1)
 \]
Approximation from Sampling

- **CORR:** for any $\beta \geq 0$, can sample Gibbs measure $p_\beta(x) \propto \exp\left(\frac{-\beta}{4n} \langle x, Ax \rangle\right)$ in time $n^{O(\beta^2)}$.

- Yields a $(1 + 1/\beta)$ approximation to Dense MAX-CUT.

- Matches $n^{O(1/\epsilon^2)}$ runtime [AKK '92] for Dense MAX-CUT but now get **all near-optimal cuts**!

- No computational phase transition in β! Sampling easier than optimization!

- Q: what other PTAS’s can be found by “just” sampling the Gibbs measure?
We developed a new algorithm which provably samples from all “approximately low rank” Ising models.

Many other interesting applications: Hopfield networks, Ferromagnetic SK, Contextual SBM, mixture models, Ising models on expanders, …

Variational inference ideas help us predict which problems are tractable.

What aspects of this story extend beyond Ising?
Thanks!