Mean-Field Models and Arrow's Theorem

Frederic Koehler

INFORMS Applied Probability Society (APS) Conference, June 2025

FK is at the Department of Statistics and Data Science Institute, University of Chicago. This talk is primarily based on a joint work with Elchanan Mossel (MIT, Department of Mathematics): "A Phase Transition in Arrow's Theorem with Three Alternatives", Annals of Applied Probability 2024.

Outline

Voting and preference aggregation

Arrow's Impossibility Theorem

How likely are "irrational" outcomes?

Correlated preferences and statistical physics

Mean-field (Rafaelli-Marsili) model

Main Results (K-Mossel '24)

Beyond the mean-field model

Conclusions and Open Problems

Voting and preference aggregation

• Suppose a collection of conference attendees want to collectively pick a restaurant to go to dinner at.

- Suppose a collection of conference attendees want to collectively pick a restaurant to go to dinner at.
- Suppose we have a set of q = 3 alternatives: A, B, C.

- Suppose a collection of conference attendees want to collectively pick a restaurant to go to dinner at.
- Suppose we have a set of q = 3 alternatives: A, B, C.
- Each voter has a preference ranking: a linear ordering over (A, B, C), e.g. A ≻ B ≻ C.

- Suppose a collection of conference attendees want to collectively pick a restaurant to go to dinner at.
- Suppose we have a set of q = 3 alternatives: A, B, C.
- Each voter has a preference ranking: a linear ordering over (A, B, C), e.g. A ≻ B ≻ C.
- Denote by S_3 the set of all 3! = 6 possible rankings.

- Suppose a collection of conference attendees want to collectively pick a restaurant to go to dinner at.
- Suppose we have a set of q = 3 alternatives: A, B, C.
- Each voter has a preference ranking: a linear ordering over (A, B, C), e.g. A ≻ B ≻ C.
- Denote by S_3 the set of all 3! = 6 possible rankings.
- Makes sense for general q.

• Key question: How can we aggregate everybody's preferences to (e.g.) pick a restaurant/president?

- Key question: How can we aggregate everybody's preferences to (e.g.) pick a restaurant/president?
- A voting rule (constitution) maps a profile of n rankings (x₁,..., x_n) ∈ Sⁿ₃ to a societal ranking in S₃.

- Key question: How can we aggregate everybody's preferences to (e.g.) pick a restaurant/president?
- A voting rule (constitution) maps a profile of n rankings $(x_1, \ldots, x_n) \in S_3^n$ to a societal ranking in S_3 .
- Two desirable properties:

- Key question: How can we aggregate everybody's preferences to (e.g.) pick a restaurant/president?
- A voting rule (constitution) maps a profile of n rankings $(x_1, \ldots, x_n) \in S_3^n$ to a societal ranking in S_3 .
- Two desirable properties:
 - **Unanimity**: if all voters rank $A \succ B$, then society ranks $A \succ B$.

- Key question: How can we aggregate everybody's preferences to (e.g.) pick a restaurant/president?
- A voting rule (constitution) maps a profile of n rankings $(x_1, \ldots, x_n) \in S_3^n$ to a societal ranking in S_3 .
- Two desirable properties:
 - **Unanimity**: if all voters rank $A \succ B$, then society ranks $A \succ B$.
 - Independence of Irrelevant Alternatives (IIA): the social preference between any two alternatives *A*, *B* depends only on how each voter ranks *A* vs. *B*.

 A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:
 - Voter 1: $A \succ B \succ C$

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:
 - Voter 1: $A \succ B \succ C$
 - Voter 2: $B \succ C \succ A$

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:
 - Voter 1: $A \succ B \succ C$
 - Voter 2: $B \succ C \succ A$
 - Voter 3: $C \succ A \succ B$

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:
 - Voter 1: $A \succ B \succ C$
 - Voter 2: $B \succ C \succ A$
 - Voter 3: $C \succ A \succ B$
- Aggregated preferences: gives $A \succ B$, $B \succ C$, and $C \succ A$!

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:
 - Voter 1: $A \succ B \succ C$
 - Voter 2: $B \succ C \succ A$
 - Voter 3: $C \succ A \succ B$
- Aggregated preferences: gives $A \succ B$, $B \succ C$, and $C \succ A$!
- Intransitive preferences seem deeply concerning/ "irrational".

- A societal ranking is *transitive* if A ≻ B and B ≻ C together imply A ≻ C.
- A **Condorcet winner** is an alternative that beats each other alternative in pairwise majority votes.
- However, pairwise majority can produce a Condorcet paradox:
 - Voter 1: $A \succ B \succ C$
 - Voter 2: $B \succ C \succ A$
 - Voter 3: $C \succ A \succ B$
- Aggregated preferences: gives $A \succ B$, $B \succ C$, and $C \succ A$!
- Intransitive preferences seem deeply concerning/"irrational".
- Important question: can irrational outcomes be avoided by "smarter"/different voting rules like ranked choice voting?

Arrow's Impossibility Theorem

• Important question: can irrational outcomes be avoided by "smarter" voting rules like ranked choice voting?

Arrow's Theorem (Informal)

- Important question: can irrational outcomes be avoided by "smarter" voting rules like ranked choice voting?
- Arrow showed that the answer is NO.

- Important question: can irrational outcomes be avoided by "smarter" voting rules like ranked choice voting?
- Arrow showed that the answer is NO.

Arrow (1950) For $q \ge 3$, any voting rule satisfying Unanimity and IIA must be either:

- Important question: can irrational outcomes be avoided by "smarter" voting rules like ranked choice voting?
- Arrow showed that the answer is NO.

Arrow (1950)

For $q \geq 3$, any voting rule satisfying Unanimity and IIA must be either:

• a dictatorship (one voter determines the outcome), or

- Important question: can irrational outcomes be avoided by "smarter" voting rules like ranked choice voting?
- Arrow showed that the answer is NO.

Arrow (1950)

For $q \geq 3$, any voting rule satisfying Unanimity and IIA must be either:

- a *dictatorship* (one voter determines the outcome), or
- produce an intransitive (irrational) result for some profile.

How likely are "irrational" outcomes?

• Fundamental question: Arrow's theorem tells us that intransitive outcomes are possible, but are they likely ?

- Fundamental question: Arrow's theorem tells us that intransitive outcomes are possible, but are they likely ?
- In 1952, Guilbaud started to look at this question mathematically, for the special case of majority rule/Condorcet paradox.

- Fundamental question: Arrow's theorem tells us that intransitive outcomes are possible, but are they likely ?
- In 1952, Guilbaud started to look at this question mathematically, for the special case of majority rule/Condorcet paradox.
- Assume each voter draws a ranking uniformly from S_3 .

- Fundamental question: Arrow's theorem tells us that intransitive outcomes are possible, but are they likely ?
- In 1952, Guilbaud started to look at this question mathematically, for the special case of majority rule/Condorcet paradox.
- Assume each voter draws a ranking uniformly from S_3 .
- As n→∞, the probability that majority rule leads to a Condorcet paradox approaches ≈ 8%. (Guilbaud 1952)

- Fundamental question: Arrow's theorem tells us that intransitive outcomes are possible, but are they likely ?
- In 1952, Guilbaud started to look at this question mathematically, for the special case of majority rule/Condorcet paradox.
- Assume each voter draws a ranking uniformly from S_3 .
- As n→∞, the probability that majority rule leads to a Condorcet paradox approaches ≈ 8%. (Guilbaud 1952)
- What happens for voting rules?

Theorem (Mossel 2010, q = 3) Any IIA rule that is ε -far from all dictatorships (in normalized Hamming distance) produces an intransitive outcome with probability at least $\delta(\varepsilon) > 0$, uniformly over n. **Theorem (Mossel 2010,** q = 3) Any IIA rule that is ε -far from all dictatorships (in normalized Hamming distance) produces an intransitive outcome with probability at least $\delta(\varepsilon) > 0$, uniformly over n.

• Formalizes a robust version: only near-dictators have low paradox risk.
Theorem (Mossel 2010, q = 3) Any IIA rule that is ε -far from all dictatorships (in normalized Hamming distance) produces an intransitive outcome with probability at least $\delta(\varepsilon) > 0$, uniformly over n.

- Formalizes a robust version: only near-dictators have low paradox risk.
- Builds on line of work in discrete Fourier analysis and quantitative social choice theory (e.g., "majority is stablest", see paper for references).

Correlated preferences and statistical physics

• Real electorates are not independent: social influence, media, peer effects.

- Real electorates are not independent: social influence, media, peer effects.
- Natural to introduce correlation via Gibbs measures (statistical mechanics).

- Real electorates are not independent: social influence, media, peer effects.
- Natural to introduce correlation via Gibbs measures (statistical mechanics).
- Have statistical physicists thought about this problem?

- Real electorates are not independent: social influence, media, peer effects.
- Natural to introduce correlation via Gibbs measures (statistical mechanics).
- Have statistical physicists thought about this problem?
- YES.

Enter Statistical Physic(ist)s

Raffaelli, G. & Marsili, M. "Statistical mechanics of majority rule in large electorates," *J. Stat. Mech.* (2007).

• *Ising-like model of voting:* represented each voter by a spin encoding pairwise preferences, with ferromagnetic couplings favoring agreement.

Enter Statistical Physic(ist)s

Raffaelli, G. & Marsili, M. "Statistical mechanics of majority rule in large electorates," *J. Stat. Mech.* (2007).

- *Ising-like model of voting:* represented each voter by a spin encoding pairwise preferences, with ferromagnetic couplings favoring agreement.
- Mean-field analysis: derived a phase diagram showing an order-disorder transition between consensus and paradox/cycle phases as noise (inverse temperature) varies.

Raffaelli, G. & Marsili, M. "Statistical mechanics of majority rule in large electorates," *J. Stat. Mech.* (2007).

- *Ising-like model of voting:* represented each voter by a spin encoding pairwise preferences, with ferromagnetic couplings favoring agreement.
- Mean-field analysis: derived a phase diagram showing an order-disorder transition between consensus and paradox/cycle phases as noise (inverse temperature) varies.
- Critical behaviour: identified the critical inverse temperature β_c at which the probability of a Condorcet paradox drops to zero, and characterized fluctuations near β_c. (Did not consider general voting rules.)

Raffaelli, G. & Marsili, M. "Statistical mechanics of majority rule in large electorates," *J. Stat. Mech.* (2007).

- *Ising-like model of voting:* represented each voter by a spin encoding pairwise preferences, with ferromagnetic couplings favoring agreement.
- Mean-field analysis: derived a phase diagram showing an order-disorder transition between consensus and paradox/cycle phases as noise (inverse temperature) varies.
- Critical behaviour: identified the critical inverse temperature β_c at which the probability of a Condorcet paradox drops to zero, and characterized fluctuations near β_c. (Did not consider general voting rules.)
- *Challenge*: their analysis is not a (mathematically) rigorous proof. See open problems later !

Mean-field (Rafaelli-Marsili) model

Preferences $X = (X_i)_{i=1}^n \in S_q^n$ with energy

$$E(X) = \sum_{1 \leq i < j \leq n} 2d_{\tau}(X_i, X_j),$$

where d_{τ} is Kendall's tau distance between rankings. Gibbs distribution at inverse temperature β :

$$Q_{\beta}(X) = \frac{1}{Z} \exp\left(-\frac{2\beta}{n}E(X)\right).$$

Captures mean-field interaction among all pairs.

Large Deviations Interpretation

Define
$$arphi:\mathfrak{S}_q o\{\pm1\}^{\binom{q}{2}}$$
 by $arphi(\pi)_{i,j}=(-1)^{\mathbf{1}[\pi(i)>\pi(j)]}$

Then Kendall's tau distance has a "kernelized" representation:

$$\langle arphi(\pi),arphi(\pi')
angle = egin{pmatrix} q \ 2 \end{pmatrix} - 2d_{ au}(\pi,\pi')$$

By Cramer's theorem, studying the mean-field model is essentially equivalent to understanding *large deviations* of i.i.d. permutations: i.e. for sets $S \in \mathbb{R}^{\binom{q}{2}}$, computing

$$\log \Pr\left[\frac{1}{n}\sum_{i=1}^{n}\varphi(\pi_i) \in S\right]$$

where $\pi_1, \ldots, \pi_n \sim \mathsf{Uni}\mathfrak{S}_q$. See [Ellis, '06]

Main Results (K-Mossel '24)

Theorem (Quantitative Arrow, Mean-Field, q = 3) Fix $\beta < 3/4$ and $\varepsilon > 0$. Any IIA rule ε -far from dictatorships has paradox probability at least $\delta(\varepsilon, \beta) > 0$, uniformly in n.

Theorem (Quantitative Arrow, Mean-Field, q = 3) Fix $\beta < 3/4$ and $\varepsilon > 0$. Any IIA rule ε -far from dictatorships has paradox probability at least $\delta(\varepsilon, \beta) > 0$, uniformly in n.

• Paradox remains nontrivial in correlated high-T regime.

Theorem (Quantitative Arrow, Mean-Field, q = 3) Fix $\beta < 3/4$ and $\varepsilon > 0$. Any IIA rule ε -far from dictatorships has paradox probability at least $\delta(\varepsilon, \beta) > 0$, uniformly in n.

- Paradox remains nontrivial in correlated high-T regime.
- Threshold of 3/4 agrees with physics analysis for majority rule + order-disorder phase transition.

Theorem (Quantitative Arrow, Mean-Field, q = 3) Fix $\beta < 3/4$ and $\varepsilon > 0$. Any IIA rule ε -far from dictatorships has paradox probability at least $\delta(\varepsilon, \beta) > 0$, uniformly in n.

- Paradox remains nontrivial in correlated high-T regime.
- Threshold of 3/4 agrees with physics analysis for majority rule + order-disorder phase transition.
- Established via contiguity.

Phase Transition in Majority Rule

• Shows a sharp threshold at $\beta_c = 3/4$.

Phase Transition in Majority Rule

$$p_{\infty}(\beta) = \begin{cases} \frac{3}{2\pi} \arccos\left(\frac{3-4\beta}{9}\right), & \beta < \frac{3}{4}, \\ 1, & \beta > \frac{3}{4}. \end{cases}$$

- Shows a sharp threshold at $\beta_c = 3/4$.
- Below β_c : bounded away from 1; above: paradox vanishes.

14

 Theorem: For β > 3/4, majority rule paradox probability decays exponentially in n.

- Theorem: For β > 3/4, majority rule paradox probability decays exponentially in n.
- So Quantitative Arrow fails: near-majority functions avoid cycles.

- Theorem: For β > 3/4, majority rule paradox probability decays exponentially in n.
- So Quantitative Arrow fails: near-majority functions avoid cycles.
- Analysis is connected to physics ideas (mean-field approximation).

- Theorem: For β > 3/4, majority rule paradox probability decays exponentially in n.
- So Quantitative Arrow fails: near-majority functions avoid cycles.
- Analysis is connected to physics ideas (mean-field approximation).
- Rigorous mean-field approximation to free energy:

$$\frac{1}{n} \log Z_n \to \max_{s \in [-1,1]^3} \Phi(s).$$

where $NAE_3 = \{\pm 1\}^3 \setminus \{(1,1,1), (-1,-1,-1)\}$ and
 $\Phi(s) := \frac{\beta}{2} \|s\|_2^2 + \max_{Q \in \mathcal{P}(NAE_3): \mathbb{E}_Q X = s} H_Q(X).$

- Theorem: For β > 3/4, majority rule paradox probability decays exponentially in n.
- So Quantitative Arrow fails: near-majority functions avoid cycles.
- Analysis is connected to physics ideas (mean-field approximation).
- Rigorous mean-field approximation to free energy:

$$\frac{1}{n} \log Z_n \to \max_{s \in [-1,1]^3} \Phi(s).$$

where $NAE_3 = \{\pm 1\}^3 \setminus \{(1,1,1), (-1,-1,-1)\}$ and
 $\Phi(s) := \frac{\beta}{2} \|s\|_2^2 + \max_{Q \in \mathcal{P}(NAE_3): \mathbb{E}_Q X = s} H_Q(X).$

• Key mathematical difficulty: analyzing the limiting variational problem is not easy !

Mean-field equations

Define for $s \in [-1,1]^3$ the functional $\Phi(s) := \frac{\beta}{2} \|s\|_2^2 + \max_{Q \in \mathcal{P}(\mathsf{NAE}_3): \mathbb{E}_Q X = s} H_Q(X).$

Then at any critical point of Φ , we have the equality

$$\begin{split} \Phi(s) &= \log(\cosh(\lambda_1 + \lambda_2 - \lambda_3) + \cosh(\lambda_1 - \lambda_2 + \lambda_3) + \cosh(-\lambda_1 + \lambda_2 + \lambda_3)) \\ &- \frac{\beta}{2} \|s\|_2^2 + \log 2 \end{split}$$

where $\lambda_i = \beta s_i$ for i = 1, 2, 3 which satisfy mean-field equations

$$s_{1} = \frac{\sinh(\lambda_{1} + \lambda_{2} - \lambda_{3}) + \sinh(\lambda_{1} - \lambda_{2} + \lambda_{3}) - \sinh(-\lambda_{1} + \lambda_{2} + \lambda_{3})}{\cosh(\lambda_{1} + \lambda_{2} - \lambda_{3}) + \cosh(\lambda_{1} - \lambda_{2} + \lambda_{3}) + \cosh(-\lambda_{1} + \lambda_{2} + \lambda_{3})}$$

$$s_{2} = \frac{\sinh(\lambda_{1} + \lambda_{2} - \lambda_{3}) - \sinh(\lambda_{1} - \lambda_{2} + \lambda_{3}) + \sinh(-\lambda_{1} + \lambda_{2} + \lambda_{3})}{\cosh(\lambda_{1} + \lambda_{2} - \lambda_{3}) + \cosh(\lambda_{1} - \lambda_{2} + \lambda_{3}) + \cosh(-\lambda_{1} + \lambda_{2} + \lambda_{3})}$$

$$s_{3} = \frac{-\sinh(\lambda_{1} + \lambda_{2} - \lambda_{3}) + \sinh(\lambda_{1} - \lambda_{2} + \lambda_{3}) + \sinh(-\lambda_{1} + \lambda_{2} + \lambda_{3})}{\cosh(\lambda_{1} + \lambda_{2} - \lambda_{3}) + \cosh(\lambda_{1} - \lambda_{2} + \lambda_{3}) + \cosh(-\lambda_{1} + \lambda_{2} + \lambda_{3})}.$$

Analysis of solutions and Theorem

KEY LEMMA: For all $\beta \ge 0$, the solutions to the mean-field equations are of one of the following types, up to symmetries of permuting coordinates and $\lambda \mapsto -\lambda$:

1. Of the form $\lambda_1 = \lambda_2 = \lambda_3$

Analysis of solutions and Theorem

KEY LEMMA: For all $\beta \ge 0$, the solutions to the mean-field equations are of one of the following types, up to symmetries of permuting coordinates and $\lambda \mapsto -\lambda$:

- 1. Of the form $\lambda_1 = \lambda_2 = \lambda_3$
- 2. Of the form $\lambda_1 = 0, \lambda_2 = -\lambda_3$.

KEY LEMMA: For all $\beta \ge 0$, the solutions to the mean-field equations are of one of the following types, up to symmetries of permuting coordinates and $\lambda \mapsto -\lambda$:

- 1. Of the form $\lambda_1 = \lambda_2 = \lambda_3$
- 2. Of the form $\lambda_1 = 0, \lambda_2 = -\lambda_3$.
- 3. Of the form $\lambda_1 = \lambda_2$ where λ_3 has the opposite sign of λ_1 and up to symmetries, this point is unique (for $\beta > 3/4$ it has an orbit of size exactly 6).

KEY LEMMA: For all $\beta \ge 0$, the solutions to the mean-field equations are of one of the following types, up to symmetries of permuting coordinates and $\lambda \mapsto -\lambda$:

- 1. Of the form $\lambda_1 = \lambda_2 = \lambda_3$
- 2. Of the form $\lambda_1 = 0, \lambda_2 = -\lambda_3$.
- 3. Of the form $\lambda_1 = \lambda_2$ where λ_3 has the opposite sign of λ_1 and up to symmetries, this point is unique (for $\beta > 3/4$ it has an orbit of size exactly 6).

KEY LEMMA: For all $\beta \ge 0$, the solutions to the mean-field equations are of one of the following types, up to symmetries of permuting coordinates and $\lambda \mapsto -\lambda$:

- 1. Of the form $\lambda_1 = \lambda_2 = \lambda_3$
- 2. Of the form $\lambda_1 = 0, \lambda_2 = -\lambda_3$.
- 3. Of the form $\lambda_1 = \lambda_2$ where λ_3 has the opposite sign of λ_1 and up to symmetries, this point is unique (for $\beta > 3/4$ it has an orbit of size exactly 6).

$$\frac{1}{n}S_n \to S \sim Uni\{\text{global maximizers of } \Phi\}.$$

Solution Locii (over all β)

$$u := \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \lambda.$$

Solution Locii (over all β)

Figure 1: LEFT: solutions when $u_1 = u_2$. RIGHT: $u_1 \neq u_2$.

Solution Locii (over all β)

18

Beyond the mean-field model

Perfect Matching Model

Divide voters into n/2 disjoint pairs (i, j). Preferences sampled via $Q_{\beta}(X) \propto \exp\left(-2\beta \sum_{(i,j)} d_{\tau}(X_i, X_j)\right).$

 We prove quantitative Arrow's Theorem holds for all β (based on generalizing ideas from i.i.d. case — tricky).

Perfect Matching Model

Divide voters into n/2 disjoint pairs (i, j). Preferences sampled via $Q_{\beta}(X) \propto \exp\left(-2\beta \sum_{(i,j)} d_{\tau}(X_i, X_j)\right).$

- We prove quantitative Arrow's Theorem holds for all β (based on generalizing ideas from i.i.d. case — tricky).
- Paradox probability can be non-monotone in β. (Below: majority rule)

Conclusions and Open Problems

 Above another threshold (β > 3/(q + 1)) we can prove the model enters a low-T regime.

- Above another threshold (β > 3/(q + 1)) we can prove the model enters a low-T regime.
- Physics analysis (Rafaelli-Marsili): the correct answer should be a sharp "second-order" phase transition at β_c = 3/(q + 1). (Not first-order like Potts model !)

- Above another threshold (β > 3/(q + 1)) we can prove the model enters a low-T regime.
- Physics analysis (Rafaelli-Marsili): the correct answer should be a sharp "second-order" phase transition at β_c = 3/(q + 1). (Not first-order like Potts model !)
- Predicted behavior corresponds to an interesting prediction about large deviations of random permutations.

Conjecture:

$$\log \mathbb{E}[\exp(\langle \lambda, X
angle)] \leq rac{q+1}{6} \|\lambda\|^2.$$

This is a sharp "sub-Gaussian" concentration inequality about weighted inversions of a random permutation.

If true, this constant is sharp, it corresponds to the predicted phase transition at 3/(q+1). We can prove the result with a slightly worse constant (q-1)/2 via a martingale argument over a (symmetrized) Fisher-Yates shuffle.

• Introduced Gibbs models for correlated preferences.

- Introduced Gibbs models for correlated preferences.
- Established a sharp phase transition at $\beta_c = 3/4$ for q = 3.

- Introduced Gibbs models for correlated preferences.
- Established a sharp phase transition at $\beta_c = 3/4$ for q = 3.
- Proved quantitative Arrow in high-T regime.

- Introduced Gibbs models for correlated preferences.
- Established a sharp phase transition at $\beta_c = 3/4$ for q = 3.
- Proved quantitative Arrow in high-T regime.
- Observed non-monotone paradox behavior in sparse models.

• Precise analysis around critical point $\beta = 3/4$.

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:
 - They also analyzed behavior of model under random fields.

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:
 - They also analyzed behavior of model under random fields.
 - Rigorously understanding low temperature/ "ordered" phase for q > 3 is also quite complex (IMO).

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:
 - They also analyzed behavior of model under random fields.
 - Rigorously understanding low temperature/ "ordered" phase for q > 3 is also quite complex (IMO).
- Extend to other interaction graphs (e.g., lattices, networks). Conjecture: quantitative Arrow's theorem holds under natural Dobrushin uniqueness condition.

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:
 - They also analyzed behavior of model under random fields.
 - Rigorously understanding low temperature/ "ordered" phase for q > 3 is also quite complex (IMO).
- Extend to other interaction graphs (e.g., lattices, networks). Conjecture: quantitative Arrow's theorem holds under natural Dobrushin uniqueness condition.
 - Relevant recent work: sharp Kahn-Kalai-Linial (KKL) Theorem for a large class of sparse graphical models via Glauber semigroup + diagrammatic commutator expansion [K-Lifshitz-Minzer-Mossel '24]

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:
 - They also analyzed behavior of model under random fields.
 - Rigorously understanding low temperature/ "ordered" phase for q > 3 is also quite complex (IMO).
- Extend to other interaction graphs (e.g., lattices, networks). Conjecture: quantitative Arrow's theorem holds under natural Dobrushin uniqueness condition.
 - Relevant recent work: sharp Kahn-Kalai-Linial (KKL) Theorem for a large class of sparse graphical models via Glauber semigroup + diagrammatic commutator expansion [K-Lifshitz-Minzer-Mossel '24]
 - Removing sparsity assumption for KKL is a nice open problem.

- Precise analysis around critical point $\beta = 3/4$.
- Tighten thresholds and constants for general q.
- Many other open problems stemming from Rafaelli-Marsili's work:
 - They also analyzed behavior of model under random fields.
 - Rigorously understanding low temperature/ "ordered" phase for q > 3 is also quite complex (IMO).
- Extend to other interaction graphs (e.g., lattices, networks). Conjecture: quantitative Arrow's theorem holds under natural Dobrushin uniqueness condition.
 - Relevant recent work: sharp Kahn-Kalai-Linial (KKL) Theorem for a large class of sparse graphical models via Glauber semigroup + diagrammatic commutator expansion [K-Lifshitz-Minzer-Mossel '24]
 - Removing sparsity assumption for KKL is a nice open problem.
 - Arrow's theorem seems trickier: cf. invariance principle.