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Voting and preference aggregation



Alternatives and Preferences

• Suppose a collection of conference attendees want to

collectively pick a restaurant to go to dinner at.

• Suppose we have a set of q = 3 alternatives: A,B,C .

• Each voter has a preference ranking: a linear ordering over

(A,B,C ), e.g. A ≻ B ≻ C .

• Denote by S3 the set of all 3! = 6 possible rankings.

• Makes sense for general q.
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Collective Decision Rules

• Key question: How can we aggregate everybody’s preferences

to (e.g.) pick a restaurant/president?

• A voting rule (constitution) maps a profile of n rankings

(x1, . . . , xn) ∈ Sn
3 to a societal ranking in S3.

• Two desirable properties:

• Unanimity: if all voters rank A ≻ B, then society ranks

A ≻ B.

• Independence of Irrelevant Alternatives (IIA): the social

preference between any two alternatives A,B depends only on

how each voter ranks A vs. B.
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Transitivity and Condorcet Cycles

• A societal ranking is transitive if A ≻ B and B ≻ C together

imply A ≻ C .

• A Condorcet winner is an alternative that beats each other

alternative in pairwise majority votes.

• However, pairwise majority can produce a Condorcet paradox:

• Voter 1: A ≻ B ≻ C

• Voter 2: B ≻ C ≻ A

• Voter 3: C ≻ A ≻ B

• Aggregated preferences: gives A ≻ B, B ≻ C , and C ≻ A !

• Intransitive preferences seem deeply concerning/“irrational”.

• Important question: can irrational outcomes be avoided by

“smarter”/different voting rules like ranked choice voting?
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Arrow’s Impossibility Theorem



Arrow’s Theorem (Informal)

• Important question: can irrational outcomes be avoided by

“smarter” voting rules like ranked choice voting?

• Arrow showed that the answer is NO.

Arrow (1950)
For q ≥ 3, any voting rule satisfying Unanimity and IIA must be

either:

• a dictatorship (one voter determines the outcome), or

• produce an intransitive (irrational) result for some profile.
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How likely are “irrational”

outcomes?



Probability of a Cycle under Random Voting

• Fundamental question: Arrow’s theorem tells us that

intransitive outcomes are possible, but are they likely ?

• In 1952, Guilbaud started to look at this question

mathematically, for the special case of majority

rule/Condorcet paradox.

• Assume each voter draws a ranking uniformly from S3.

• As n → ∞, the probability that majority rule leads to a

Condorcet paradox approaches ≈ 8%. (Guilbaud 1952)

• What happens for voting rules?
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Quantitative Arrow (i.i.d. voters)

Theorem (Mossel 2010, q = 3)
Any IIA rule that is ε-far from all dictatorships (in normalized

Hamming distance) produces an intransitive outcome with

probability at least δ(ε) > 0, uniformly over n.

• Formalizes a robust version: only near-dictators have low

paradox risk.

• Builds on line of work in discrete Fourier analysis and

quantitative social choice theory (e.g., “majority is stablest”,

see paper for references).
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Correlated preferences and

statistical physics



Motivation for Correlations

• Real electorates are not independent: social influence, media,

peer effects.

• Natural to introduce correlation via Gibbs measures

(statistical mechanics).

• Have statistical physicists thought about this problem?

• YES.
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Enter Statistical Physic(ist)s

Raffaelli, G. & Marsili, M. “Statistical mechanics of majority

rule in large electorates,” J. Stat. Mech. (2007).

• Ising-like model of voting: represented each voter by a spin

encoding pairwise preferences, with ferromagnetic couplings

favoring agreement.

• Mean-field analysis: derived a phase diagram showing an

order–disorder transition between consensus and

paradox/cycle phases as noise (inverse temperature) varies.

• Critical behaviour: identified the critical inverse temperature

βc at which the probability of a Condorcet paradox drops to

zero, and characterized fluctuations near βc . (Did not

consider general voting rules.)

• Challenge: their analysis is not a (mathematically) rigorous

proof. See open problems later !
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Mean-field (Rafaelli-Marsili) model



Mean-field model, Rafaelli-Marsili ’07

Preferences X = (Xi )
n
i=1 ∈ Sn

q with energy

E (X ) =
∑

1≤i<j≤n

2dτ (Xi ,Xj),

where dτ is Kendall’s tau distance between rankings.

Gibbs distribution at inverse temperature β:

Qβ(X ) =
1

Z
exp

(
−2β

n
E (X )

)
.

Captures mean-field interaction among all pairs.
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Large Deviations Interpretation

Define φ : Sq → {±1}(
q
2) by

φ(π)i ,j = (−1)1[π(i)>π(j)]

Then Kendall’s tau distance has a “kernelized” representation:

⟨φ(π), φ(π′)⟩ =
(
q

2

)
− 2dτ (π, π

′)

By Cramer’s theorem, studying the mean-field model is essentially

equivalent to understanding large deviations of i.i.d. permutations:

i.e. for sets S ∈ R(
q
2), computing

log Pr

[
1

n

n∑
i=1

φ(πi ) ∈ S

]
where π1, . . . , πn ∼ UniSq. See [Ellis, ’06]
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Main Results (K-Mossel ’24)



High-Temperature Phase (β < 3/4)

Our main results rigorously solve the statistical mechanics model

and show that its phase transition completely determines the

behavior of Arrow’s Theorem when q = 3.

Theorem (Quantitative Arrow, Mean-Field, q = 3)
Fix β < 3/4 and ε > 0. Any IIA rule ε-far from dictatorships has

paradox probability at least δ(ε, β) > 0, uniformly in n.

• Paradox remains nontrivial in correlated high-T regime.

• Threshold of 3/4 agrees with physics analysis for majority rule

+ order-disorder phase transition.

• Established via contiguity.

13
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Phase Transition in Majority Rule

For majority voting, the no-cycle probability converges to

p∞(β) =


3
2π arccos

(
3−4β

9

)
, β < 3

4 ,

1, β > 3
4 .

• Shows a sharp threshold at βc = 3/4.

• Below βc : bounded away from 1; above: paradox vanishes.
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Low-Temperature Behavior (β > 3/4)

• Theorem: For β > 3/4, majority rule paradox probability

decays exponentially in n.

• So Quantitative Arrow fails: near-majority functions avoid

cycles.

• Analysis is connected to physics ideas (mean-field

approximation).

• Rigorous mean-field approximation to free energy:

1

n
logZn → max

s∈[−1,1]3
Φ(s).

where NAE3 = {±1}3 \ {(1, 1, 1), (−1,−1,−1)} and

Φ(s) :=
β

2
∥s∥22 + max

Q∈P(NAE3):EQX=s
HQ(X ).

• Key mathematical difficulty: analyzing the limiting variational

problem is not easy !
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Mean-field equations

Define for s ∈ [−1, 1]3 the functional

Φ(s) :=
β

2
∥s∥22 + max

Q∈P(NAE3):EQX=s
HQ(X ).

Then at any critical point of Φ, we have the equality

Φ(s) = log(cosh(λ1 + λ2 − λ3) + cosh(λ1 − λ2 + λ3) + cosh(−λ1 + λ2 + λ3))

− β

2
∥s∥22 + log 2

where λi = βsi for i = 1, 2, 3 which satisfy mean-field equations

s1 =
sinh(λ1 + λ2 − λ3) + sinh(λ1 − λ2 + λ3)− sinh(−λ1 + λ2 + λ3)

cosh(λ1 + λ2 − λ3) + cosh(λ1 − λ2 + λ3) + cosh(−λ1 + λ2 + λ3)

s2 =
sinh(λ1 + λ2 − λ3)− sinh(λ1 − λ2 + λ3) + sinh(−λ1 + λ2 + λ3)

cosh(λ1 + λ2 − λ3) + cosh(λ1 − λ2 + λ3) + cosh(−λ1 + λ2 + λ3)

s3 =
− sinh(λ1 + λ2 − λ3) + sinh(λ1 − λ2 + λ3) + sinh(−λ1 + λ2 + λ3)

cosh(λ1 + λ2 − λ3) + cosh(λ1 − λ2 + λ3) + cosh(−λ1 + λ2 + λ3)
.
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Analysis of solutions and Theorem

KEY LEMMA: For all β ≥ 0, the solutions to the mean-field

equations are of one of the following types, up to symmetries of

permuting coordinates and λ 7→ −λ:

1. Of the form λ1 = λ2 = λ3

2. Of the form λ1 = 0, λ2 = −λ3.

3. Of the form λ1 = λ2 where λ3 has the opposite sign of λ1 and

up to symmetries, this point is unique (for β > 3/4 it has an

orbit of size exactly 6).

Furthermore, points of third type are the global maximizers of Φ.

FINAL THEOREM:

1

n
Sn → S ∼ Uni{global maximizers of Φ}.
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Solution Locii (over all β)

u :=

 1 1 −1

1 −1 1

−1 1 1

λ.

Figure 1: LEFT: solutions when

u1 = u2. RIGHT: u1 ̸= u2.
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Beyond the mean-field model



Perfect Matching Model

Divide voters into n/2 disjoint pairs (i , j). Preferences sampled via

Qβ(X ) ∝ exp
(
−2β

∑
(i ,j)

dτ (Xi ,Xj)
)
.

• We prove quantitative Arrow’s Theorem holds for all β (based

on generalizing ideas from i.i.d. case — tricky).

• Paradox probability can be non-monotone in β. (Below:

majority rule)
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Conclusions and Open Problems



Quantitative Arrow for q > 3?

Theorem (Mean-Field, general q)
If β < 1/(q − 1) and a rule is ε-far from dictators, paradox

probability ≥ δ(ε, β) > 0.

• Above another threshold (β > 3/(q + 1)) we can prove the

model enters a low-T regime.

• Physics analysis (Rafaelli-Marsili): the correct answer should

be a sharp “second-order” phase transition at βc = 3/(q + 1).

(Not first-order like Potts model !)

• Predicted behavior corresponds to an interesting prediction

about large deviations of random permutations.
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Large Deviations Conjecture

Conjecture:

logE[exp(⟨λ,X ⟩)] ≤ q + 1

6
∥λ∥2.

This is a sharp “sub-Gaussian” concentration inequality about

weighted inversions of a random permutation.

If true, this constant is sharp, it corresponds to the predicted phase

transition at 3/(q + 1). We can prove the result with a slightly

worse constant (q − 1)/2 via a martingale argument over a

(symmetrized) Fisher-Yates shuffle.
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Conclusions

• Introduced Gibbs models for correlated preferences.

• Established a sharp phase transition at βc = 3/4 for q = 3.

• Proved quantitative Arrow in high-T regime.

• Observed non-monotone paradox behavior in sparse models.
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Open Problems

• Precise analysis around critical point β = 3/4.

• Tighten thresholds and constants for general q.
• Many other open problems stemming from Rafaelli-Marsili’s
work:

• They also analyzed behavior of model under random fields.

• Rigorously understanding low temperature/“ordered” phase for

q > 3 is also quite complex (IMO).

• Extend to other interaction graphs (e.g., lattices, networks).
Conjecture: quantitative Arrow’s theorem holds under natural
Dobrushin uniqueness condition.

• Relevant recent work: sharp Kahn-Kalai-Linial (KKL) Theorem

for a large class of sparse graphical models via Glauber

semigroup + diagrammatic commutator expansion

[K-Lifshitz-Minzer-Mossel ’24]

• Removing sparsity assumption for KKL is a nice open problem.

• Arrow’s theorem seems trickier: cf. invariance principle.
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