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Learning Distributions from Samples

Training Data 
(iid from ground truth )

x1, x2, …, xn
p*

Model w/ parameter  
selected using data

̂θ

p ̂θ(x)

{pθ : θ ∈ Θ}Class of models (probability distributions)
 with parameter θ

Learning: select best 
based on training data!

θ Sampling: draw
X ∼ p ̂θ

Output of Model
(hopefully matches true distribution!)



Energy-Based Models
In this talk, we will mostly be interested in learning “energy-based models”

Why? Hard to find models with closed-form likelihood, these are almost as good. 

Recent survey: How to Train Your Energy-Based Models [Song-Kingma ’21]

pθ(x) =
1
Zθ

exp (fθ(x)) Zθ = ∫ exp( fθ(x))dx



How to learn the best model?

̂θ = arg max
θ∈Θ

n

∑
i=1

log pθ(xi)

Maximum Likelihood Estimation (MLE)

Lambert 1760

The good: asymptotically optimal (in sample-efficiency) as  !

The bad: tricky to compute — involves sampling/partition function .

n → ∞

Zθ

“pick the model which maximizes the probability of the data”



An Alternative: Score Matching
Try to fit gradients of a distribution, i.e. 
minimize

n

∑
i=1

∥∇xlog pθ(xi) − ∇xlog p*(xi)∥2

Only makes sense for smooth densities. 

No access to , so use 
integration by parts trick!

∇xlog p*(x)

̂θ = arg min
θ∈Θ

n

∑
i=1

Δ log pθ(xi) +
1
2

∥∇log pθ(xi)∥2



Aside: integration by parts trick

𝔼∥∇log p* − ∇log p∥2 = Cp* − 2𝔼⟨∇log p*, ∇log p⟩ + 𝔼∥∇log p∥2

𝔼⟨∇log p*, ∇log p⟩ = ∫ p*(x)⟨∇log p*(x), ∇log p(x)⟩dx

= ∫ ⟨∇p*(x), ∇log p(x)⟩dx

= − ∫ p*(x)Δ log p(x)dx
“Green’s first identity”
(Divergence Theorem)

assumes decay at infinity



Key Question
what is the statistical cost of using score matching instead of 

maximum likelihood estimation ? 

i.e. how many more samples will we need to achieve the same accuracy?



Score matching can struggle to learn the distribution

MLE (green, indistinguishable from truth) vs. score matching (blue)

small separation large separation

see also [Wenliang et al ’18, Song and Ermon ’19,…]



Asymptotic Theory: Exponential Families



Exponential Families
Want to fit an Exponential family: 

❖ Ex: Gaussian ⇔ . F is called the “sufficient statistic”

❖ I.e. an energy-based model with energy linear in “feature map” F(x).

Computing MLE is possible if we can efficiently sample from . 

But sampling can be computationally hard.

Score matching: closed form [Hyvarinen ’07] !!!

Q: is there a catch? do we lose statistically for using score matching instead of MLE?

pθ(x) ∝ exp (⟨θ, F(x)⟩)
F(x) = (x, xxT)

pθ

̂θSM = − (�̂�[(JF)X(JF)T
X] )

−1
�̂�ΔF, where ̂E[ f ] =

1
n

n

∑
i=1

f(xi)



A Connection of Learning and Sampling
❖ We find statistical performance of score 

matching is deeply connected to 
algorithmic performance of the Langevin 
dynamics, a canonical sampling 
algorithm.

❖ Langevin diffusion = “Gradient ascent 
plus noise”

Langevin dynamics for a Gaussian, started at (10,10)
(“rapid mixing”)

dXt = ∇log p(Xt)dt + 2dBt



Torpid mixing of Langevin

https://waynedw.github.io/posts/CSGLD/



Quick Summary

Informal Theorem: Score matching is almost as sample-efficient as MLE if 
Langevin mixes rapidly! 

roughly,  for sufficiently large # of samples n

Informal Converse: If Langevin mixes slowly, then score matching pays a 
corresponding sample efficiency penalty in any sufficiently rich exponential 
family.

∥ ̂θSM − θ∥2 = O (∥ ̂θMLE − θ∥2)



What is relative (sample) efficiency?
❖ Let’s be precise about sample complexity.

❖ Notation:  is the covariance matrix of random vector .

❖ Asymptotic normality of MLE:   

❖ Here  is the “inverse Fisher information” and it is optimal in some 
strong (technically involved) sense.

❖ Score matching is also asymptotically normal: 

❖ “All we need to do”: see how much bigger  is compared to 

ΣX = 𝔼[XXT] − 𝔼[X]𝔼[X]T X

n( ̂θMLE − θ) → N(0,ΓMLE)

ΓMLE = Σ−1
F

n( ̂θSM − θ) → N(0,ΓSM)

ΓSM ΓMLE

ΓSM = 𝔼[(JF)X(JF)T
X]−1 Σ(JF)X(JF)T

Xθ+ΔF 𝔼[(JF)X(JF)T
X]−1 .



Aside: asymptotic normality

❖ “Delta method” (see [Forbes-Lauritzen ’14]):

❖

❖

❖  jointly Gaussian by Central Limit Theorem.

❖ Calculate it out…

❖ Determining  is “standard”, but analyzing it is the real challenge ! 

�̂�[(JF)X(JF)T
X] = 𝔼[(JF)X(JF)T

X] + Δ1/ n

�̂�ΔF = 𝔼ΔF + Δ2/ n

(Δ1, Δ2)

ΓSM

̂θSM = − (�̂�[(JF)X(JF)T
X] )

−1
�̂�ΔF, where ̂E[ f ] =

1
n

n

∑
i=1

f(xi)



Visualization of limiting covariances



(Restricted) Poincare constant
Definition: the Poincare constant of  is the minimal  so that for every 

 and function ,

Restricted Poincare constant: smallest  for all  where F(x) is 
the sufficient statistic. Can be smaller!

1. Poincare constant equivalent to relaxation time of Langevin dynamics.

2. We control performance of score matching by restricted Poincare constant.

pθ CP > 0
θ ∈ Θ f

CP f(x) = ⟨τ, F(x)⟩

Varpθ( f(x)) ≤ CP 𝔼x∼pθ
∥∇f(x)∥2



Upper bound
❖ Theorem: if  is the restricted Poincare constant, then

❖ So… our loss compared to MLE is controlled by: 

❖ Restricted Poincare constant 

❖ Smoothness 

❖ A quadratic factor.

❖ Dependence on restricted Poincare+“smoothness” is required (lower bound)

CP

CP

(∥θ∥2𝔼∥(JF)X∥4
OP + 𝔼∥ΔF∥2

2)

∥ΓSM∥OP ≤ 2C2
P∥ΓMLE∥2

OP (∥θ∥2𝔼∥(JF)X∥4
OP + 𝔼∥ΔF∥2

2) .



Proof idea

❖ Recall… 

❖ Proof straightforward given Key Lemma.

❖ Key Lemma: 

❖ Proof: for any vector w,

ΓSM = 𝔼[(JF)X(JF)T
X]−1 Σ(JF)X(JF)T

Xθ+ΔF 𝔼[(JF)X(JF)T
X]−1 .

𝔼[(JF)X(JF)T
X]−1 ⪯ CPΣ−1

F

⟨w, 𝔼[(JF)X(JF)T
X]w⟩ = 𝔼∥∇x⟨w, F(x)⟩ |X∥2

2

≥
1
CP

Var(⟨w, F(x)⟩) =
1
CP

⟨w, ΣFw⟩



A bit about the lower bound
❖ Suppose that  has a large (unrestricted) Poincare 

constant  and . This does not imply a large restricted Poincare constant, nor 
the failure of score matching. (Examples on next slides)

❖ However, we can view  as an element of a a larger exponential family by 
 where  and  is carefully chosen. 

❖ In this larger family, restricted Poincare is big and score matching performs 
poorly —- there exists  so that

pθ ∝ exp (⟨θ, F1(x)⟩)
CP F1

pθ
pθ(x) ∝ exp(⟨θ, F1(x)⟩ + θ2F2(x)) θ2 = 0 F2

w

⟨w, ΓSMw⟩
⟨w, ΓMLEw⟩

=
Ωd(CP)

smoothness





Varpθ( f(x)) ≤ CP 𝔼x∼pθ
∥∇f(x)∥2

Score matching does work in some multimodal examples. Explained by “restricted Poincare constant”.



Adding a sufficient statistic with coefficient  causes failure of score matching.θ1 = 0



Proof idea
❖ Large Poincare constant implies a sparse cut exists

❖ “Hard direction” of Cheeger's inequality.

❖ Add a new sufficient statistic corresponding to 
smoothed indicator of the sparse cut.

❖ Prove estimated coefficient for the new statistic has 
large variance. 

❖ uses formula for  and analysis on tubular 
neighborhoods of cut surface.

ΓMLE



Summary (asymptotics)
Rapid mixing of Langevin dynamics

MLE is polytime computable

Restricted Poincare inequality

Score matching 
has good sample complexity

(almost equivalent)

In general, MLE is hard to compute and score matching is statistically bad. 
Rapid mixing of Langevin fixes both problems.



Nonasymptotic theory 
(and some new connections!)

From now on, we are no longer specializing to exponential families.



Nonasymptotic theory

Log-sobolev constant  defined s.t. 

• Strengthening of Poincare. Mixing in KL Divergence.

• Relates KL divergence (what we care about) to “population risk” of score 
matching (i.e. “test error”).

Score matching estimator is an “empirical risk minimizer” so statistical learning 
theory tells us how to control population risk.

Cq KL(p, q) ≤ Cq 𝔼∥∇log p − ∇log q∥2

̂θ = arg min
θ∈Θ

n

∑
i=1

Δ log pθ(xi) +
1
2

∥∇log pθ(xi)∥2



Nonasymptotic theory (summary)

ℛn := 𝔼X1,…,Xn,ϵ1,…,ϵn
sup
θ∈Θ

1
n

n

∑
i=1

ϵi [Δ log pθ(Xi) +
1
2

∥∇log pθ(Xi)∥2]
ϵ1, …, ϵn ∼ Uni{±1}

 whereKL(p, p ̂θ) ≤ Cp ̂θ
𝔼∥∇log p* − ∇log p ̂θ∥

2 ≤ 2Cp ̂θ
ℛn

log-Sobolev “symmetrization”

Rademacher complexity

Suppose  “well-specified” (for simplicity).p* = pθ*



Example



More on Log-Sobolev

❖ In general, log-Sobolev is defined for an arbitrary Markov semigroup. 

❖ So far we only talked about log-Sobolev for Langevin semigroup.

❖ The “other” famous Markov chain is Glauber dynamics (Gibbs sampler)

❖ At every step, pick a random coordinate i of , resample 

❖ Makes sense for both continuous and discrete distribution.

❖ We can now answer: score matching is to Langevin as ??????? is to Glauber 

X Xi ∣ X∼i



Pseudolikelihood
❖ Log-sobolev inequality for Glauber dynamics on Q 

implies approximate tensorization of entropy 
[Marton ’14, Caputo-Menz-Tetali ’15]

❖ This implies rapid mixing of Glauber.

❖ RHS is the (population) objective for the famous 
pseudolikelihood estimator [Besag ’71] !!!

❖ Nonasymptotic bounds via symmetrization.

❖ C.f. [Hyvarinen ’06, ‘07a, ‘07b, Lyu ’09,…] 

KL(P, Q) ≤ Cq

n

∑
i=1

𝔼X∼i∼P KL(P(Xi ∣ X∼i), Q(Xi ∣ X∼i))



Summary & Thoughts (up to now)

❖ Score matching & pseudolikelihood vs MLE. 

❖ A kind of computational-statistical tradeoff. (See also follow up works e.g. 
[Pabbaraju et al ’23]…)

❖ Learning meets sampling. 

❖ Proving LSI/ATE has useful statistical implications!



A Teaser

❖ Message so far: vanilla score matching doesn’t work well with multimodal data and 
large function classes

❖ There are many ways to fix it. One popular method is learning the annealed 
score functions (a type of diffusion model).

❖ But…could we use the vanilla score function anyway?



Inspiration from previous experiments

❖ Right: [Xie-Lu-Zhu-Wu ’16]

❖ Train an energy-based model via 
contrastive divergence (CD) 
[Hinton ’06]

❖ Key point: use training data to 
initialize the sampler!

❖ An old but effective method?



Aside: what is contrastive divergence?

❖ Suppose  where 

❖ MLE: maximize 

❖ Gradient: 

❖ Run GD + approximate second expectation using data-based MCMC

pθ(x) = exp( fθ(x) − log Zθ) Zθ = ∫ exp( fθ(x))

𝔼 log pθ(x) = 𝔼fθ(x) − log Zθ

𝔼∇fθ − 𝔼θ ∇fθ



Sampling multimodal distributions with the vanilla score
THM [K + Vuong ‘23+]: for mixtures of log-concave, Langevin with data-based 
initialization + early stopping succeeds with any vanilla score matched model.



Insights into contrastive divergence?
❖ Hyvarinen: score matching can be recovered as a limit of contrastive 

divergence training as step size goes to zero.

❖ It seems CD implicitly fits the vanilla score function, so our theory applies.



Further Thoughts

❖ Please read our papers for more!

❖ What applications is vanilla score matching/CD the right approach for?

❖ Seems unlikely one approach to generative modeling is the best for all types 
of data…

❖ Clear benefits of pursuing a diversity of approaches. Otherwise, we would 
still be using GANs for everything.


