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Learning Distributions from Samples

{ Po - =N, } Class of models (probability distributions)

with parameter 6

Learning: select best ¢ Sampling: draw
based on training data! X ~ p;

Training Data x, x,, ..., X Model w/ parameter 0 Output of Model

(iid from ground truth p*) selected using data (hopefully matches true distribution!)



Energy-Based Models

In this talk, we will mostly be interested in learning “energy-based models”

1
Bil=__ 3D (fo0) Ly = [éXP(fe(X))dx
0

Why? Hard to find models with closed-form likelihood, these are almost as good.

Recent survey: How to Train Your Enerqy-Based Models |Song-Kingma "21]



How to learn the best model?

Maximum Likelihood Estimation (MLE)
“pick the model which maximizes the probability of the data”

§ 303. Cum vero iam in genere ifte
maxime fit Qrobabllls, qui omnium frequé%{ﬂg’

fime occurrit, «;qnquyeus eft, debere effe
=i PN‘Q:R’L RK':: numero maximo.

0 = are max lo X,
g may Z g py(%)

Lambert 1760
The good: asymptotically optimal (in sample-efficiency) asn — oo !

The bad: tricky to compute — involves sampling/ partition function Z,.



An Alternative: Score Matching

Journal of Machine Learning RResearch 6 (2005) 695-70Y Submitted 11/04; Revised 3/05; Published 4 /05

Try to fit gradients of a distribution, i.e.
minimize

Estimation of Non-Normalized Statistical Models
by Score Matching

n
2
Z H Vxlog pe('xl) o V}C]‘Og p*('xl) ” Aapo Hyvarinen AAPO._HYVARINENQHRLSINKI.FT

. Helsinki Institute for Information Technology (BRU)
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Only makes sense for smooth densities.

Editor: Pcter Dayan

Abstract

*(x)
NO acceSS tO Vxl()g p ’x J SO use One often wants to estimate statistical models where the probability density function is

known only up to a multiplicative normalization constant. Tvpically, one then has to resort
: . b : k' to Markov Chain Monte Carlo methods, or approximations of the normalization constant.
lnte grathn y parts trlc o Here, we propose that such models can be estimated by minimizing the expected squared
distance between the gradient of the log-density given by the model and the gradient of
the log-density of the observed data. While the estimation of the gradient of log-density
n 1 function is, in principle, a very difficult non-parametric problem. we prove a surprising
Z = 2 result. that gives a simple formula for this objective function. "The density function of the
9 —_— arg mln A 10 g p ( x) _|_ = L | ‘ V 10 g p ( x) ‘ | observed data does not appear in this formula, which simplifies to a sample average of a
9 l g l sum of some derivatives of the log-density given by the model. The validity of the method
96@ 2 is demonstrated on multivariate Ganssian and independent. component analysis models,

l’ - 1 and by estimating an overcomplete filter set for natural image data.

Keywords: statistical estimation. non-normalized densities, pseudo-likelihood, Markov
chain Monte Carlo, contrastive divergence




Aside: integration by parts trick

=||V1og p* — Viog p||* = Cpx — 2

-(Vlog p*, Vlog p) +

~(Vlog p*, Vlogp) = [p*(x)< Vlog p*(x), Vlog p(x))dx

= [(Vp*(X), Vlog p(x))dx

e Jp*(x)A log p(x)dx

|| Viog p|*




Key Question
what is the statistical cost of using score matching instead of
maximum likelihood estimation ?

i.e. how many more samples will we need to achieve the same accuracy?



Score matching can struggle to learn the distribution
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MLE (green, indistinguishable from truth) vs. score matching (blue)

see also [Wenliang et al "18, Song and Ermon "19,...]



Asymptotic Theory: Exponental Families



Exponential Families

Want to fit an Exponential family: p,(x) o« exp ((6’, F (x)))
» Ex: Gaussian < F(x) = (x, xx!). F is called the “sufficient statistic”
+ Le. an enerqQy-based model with energy linear in “feature map” F(x).
Computing MLE is possible if we can efficiently sample from p,.

But sampling can be computationally hard.

Score matching: closed form [Hyvarinen "07] !!!

; ; » T
O = — (ELUPRUF} ) EAF, where Elfl=—) fix)
=1

Q: is there a catch? do we lose statistically for using score matching instead of MLE?



A Connection of Learning and Sampling

* We find statistical performance of score
matching is deeply connected to

12

: 10} ) yf@ _
algorithmic performance of the Langevin cSr
. ° ° 8 =
dynamics, a canonical sampling
algorithm. o1

* Langevin diffusion = “Gradient ascent
plus noise” |

dX, = Vlog p(X)dr + \/EdBt

Langevin dynamics for a Gaussian, started at (10,10)
(“rapid mixing”)



T'orpid mixing of Langevin

.................................. ‘
'I'?" '!
() |
[} |
[0} |
[ v l
[ ‘;
I l
[y |

[ f
P f'
a'. | f'
f \:r ‘\ "
/ 1 . \| "
Energy barrier > 10 ]
" ';\ \ ."
) \ |
I \ /
' \\ ‘I
; \ /
- '
| \ /
. /
; \ /
: /"

https:/ /waynedw.github.io/posts/ CSGLD /



(Quick Summary

Informal Theorem: Score matching is almost as sample-efficient as MLE if
Langevin mixes rapidly!

roughly, H@SM —9|I*=0 (HéMLE — HHZ) for sufficiently large # of samples n

Informal Converse: If Langevin mixes slowly, then score matching pays a
corresponding sample efficiency penalty in any sufficiently rich exponential
family:.



What is relative (sample) efficiency?

“ Let’s be precise about sample complexity.

« Notation: 2 =

E[XX'] —

= [ X ]

“[X1! is the covariance matrix of random vector X.

= Asymptotic normality of MLLE: \/;(é’MLE —0) — NOL'j;15)

+ Here I'y;; r = 7! is the “inverse Fisher information” and it is optimal in some

strong (technically involved) sense.

+ Score matching is also asymptotically normal: \/E (6A’SM — 0) - N(O,I )

Loy =

~[(JE)x(JF ))T(]_l 2yr)Rge+ar ELUF)x(JF ))T(]_l-

« “All we need to do”: see how much bigger I',,is compared to I';; -



Aside: asymptotic normality

A A =1 e 1 &
Osy = — ( E[(JF)x(JF)y] ) “AF, where E[f]= = Zf(xi)
=1

* “Delta method” (see [Forbes-Lauritzen "14]):

¢ E[UR)X(UF)Y] = ELUF)XUF)¥] + A /y/n

A\

+ EAF = EAF + A,/\/n

« (A, A,) jointly Gaussian by Central Limit Theorem.
* Calculate it out...

+ Determining I ¢, 1s “standard”, but analyzing it is the real challenge !



Visualization of limiting covariances
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(Restricted) Poincare constant

Definition: the Poincare constant of p,is the minimal Cp > 0 so that for every
6 € © and function f,

Var,(fx)) < CpE,_, | V()|

Restricted Poincare constant: smallest C, for all f(x) = (r, F(x)) where F(x) is
the sufficient statistic. Can be smaller!

1. Poincare constant equivalent to relaxation time of Langevin dynamics.

2. We control performance of score matching by restricted Poincare constant.



Upper bound

+ Theorem: if Cp is the restricted Poincare constant, then

ICsullop < 2C2IT el 5p (IOIPENUF)L IS, + EIIAF) .

“ 50... our loss compared to MLE is controlled by:

+ Restricted Poincare constant Cp

+» Smoothness (HHHLH(JF)XH%})"‘ 'HAFH%)

* A quadratic factor.

* Dependence on restricted Poincare+“smoothness” is required (lower bound)



+» Recall...

Proof idea

Igy = E[UF)(JF ))T(]_l Z(JF)X(JF);QQ+AF “[(JF)x(JF ))T(]_l :

* Proof straightforward given Key Lemma.

& Key Lemma: ‘[(JF)X(JF))T(]_l > CPZEI

* Prootft: for any vector w,

W,

E[(JF)(JF)ylw) = E||V (w, F(O)) | |15

> i Var((w, F(x))) = i <W ZEW)
Cp



A bit about the lower bound

» Suppose that p, o exp ((6’, F, (x))) has a large (unrestricted) Poincare

constant Cp and F,. This does not imply a large restricted Poincare constant, nor
the failure of score matching. (Examples on next slides)

+ However, we can view py as an element of a a larger exponential family by
pox) x exp((b, Fi(x)) + 6,F,(x)) where 8, = 0 and F, is carefully chosen.

* In this larger family, restricted Poincare is big and score matching performs
poorly —- there exists w so that

(w, Lgpyw) T Qd(CP)
(w,I'y;ew)  smoothness
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Figure 3: Here we see the result of running an identical experiment to Figure 1, only we remove the second sufficient

statistic, so our distribution is now pg(z) o efo(z”—2"/(2a%)) where 6o = 1 and we again vary the offset a between 1
and 7. With only the single sufficient statistic, score matching performs comparably to MLE.

Score matching does work in some multimodal examples. Explained by “restricted Poincare constant”.
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Figure 1: Statistical efficiency of score matching vs MLE for fitting the distribution with ground truth parameters
(6,01) = (1,0) of the form py(z) o efo(=”—a"/(2a°))+01 (2" —2"/(2a%)+erf(2)) a5 we vary the offset a between 1 and
7 and train with fixed number of samples (10°). We see score matching (red) performs very poorly compared to the

MLE (blue) as the offset (distance between modes) grows, by plotting the log of the Euclidean distance to the true
parameter for both estimators.

Adding a sufficient statistic with coefficient 8; = 0 causes failure of score matching.



Proof idea

Large Poincare constant implies a sparse cut exists

N/

* “Hard direction” of Cheeger's inequality:.

Add a new sufficient statistic corresponding to
smoothed indicator of the sparse cut.

Prove estimated coefficient for the new statistic has
large variance.

+ uses formula for | ,; » and analysis on tubular

)

neighborhoods ot cut surtace.

Alfred Gray

Tubes

Second Edition

Birkhauser




Summary (asymptotics)

Rapid mixing of Langevin dynamics

<

Restricted Poincare inequality

(almost equivalent)

MLE is polytime computable

Score matching
has good sample complexity




Nonasymptotic theory
(and some new connections!)

From now on, we are no longer specializing to exponential families.



Nonasymptotic theory

Log-sobolev constant C, defined s.t. KL(p, q) < C_ E||Vlogp — Vlog qll”

» Strengthening of Poincare. Mixing in KL Divergence.

» Relates KL divergence (what we care about) to “population risk” of score
matching (i.e. “test error”).

Score matching estimator is an “empirical risk minimizer” so statistical learning
theory tells us how to control population risk.

A\

- 1 :
0 =argmin > Alogpy(x) +—[IVIog pyx)l

0
€0 e



S
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Nonasymptotic theory (summary)

KL(p,py) < Cpé—HVI()gp>X< — Vl()gp@H2 < 2Cp@9§n where

log-Sobolev

| |
n— LX,...X.e,...e WP~ /2, € [A log py(X;) + EHVIOgPe(Xi)”z]

€1, ...,€, ~ Uni{x1}

Rademacher complexity



Example

Example 1. Suppose we are fitting an isotropic Gaussian in d dimensions with unknown mean p* satisfying ||u*|| < R.
The class of distributions P is q, with ||p|| < R of the form q,,(z) o exp (—||z — p||*/2) so the expected Rademacher
complexity can be upper bounded as so:

1 ’ 1 “
R, = Esup — €; —d/2+—||Xi—MH2
po i3 L 2 -
1 — 1 — ]l — 2 R* +d
+
= Lsup ( — Ein',/.L = RE||— GiX?; SR K- CiXi =R\/

where the inequality is Jensen’s inequality and in the last step we expanded the square and used that Ee;e; = 1(i = j)
and E|| X;||? < R? + d. Recall that the standard Gaussian distribution is 1-strongly log concave so Crs < 1/2.

Hence we have the concrete bound EKL(p, p) < R\/ R2n+d.




More on Log-Sobolev

* In general, log-Sobolev is defined tor an arbitrary Markov semigroup.

* 50 tar we only talked about log-Sobolev for Langevin semigroup.

* The “other” famous Markov chain is Glauber dynamics (Gibbs sampler)
+ At every step, pick a random coordinate i of X, resample X | X _.

+ Makes sense for both continuous and discrete distribution.



* Log-sobolev inequality for Glauber dynamics on Q

KL(P.Q) < C, D,
=1

Pseudolikelihood

implies approximate tensorization of entropy
[Marton "14, Caputo-Menz-Tetali "15}

This implies rapid mixing of Glauber.

RHS is the (population) objective for the famous
pseudolikelihood estimator [Besag "71] !!!

Nonasymptotic bounds via symmetrization.

C.f. [Hyvarinen "06, ‘07a, “‘07b, Lyu "09,...]

~X _.~P KL(P (Xi | XNi)a Q(Xl | XNZ'))

Statistical Analysis of
Non-lattice Data

JULIAN BESAGT, University of Liverpool and Princeton University

A Markovian approach to the specification of spatial stochastic
interaction for irregularly distributed data points is reviewed.

Three specific methods of statistical analysis are proposed ; the
first two are generally applicable whilst the third relates only to
“normally” distributed variables. Some reservations are expressed
and the need for practical investigations is emphasized.

1. Introduction

In rather formal terms, the situation with which this paper is concerned
may be described as follows. We are given a fixed system of # sites, labelled
by the first # positive integers, and an associated vector x of observations,
X1, . « . » Xn, Which, in turn, is presumed to be a realization of a vector X
of (dependent) random variables, X3, ..., X». In practice, the sites may
represent points or regions in space and the random variables may be
either continuous or discrete. The main statistical objectives are the
following: firstly, to provide a means of using the available concomitant
information, particularly the configuration of the sites, to attach a plausible
probability distribution to the random vector X secondly, to estimate
any unknown parameters in the distribution from the realization x;
thirdly, where possible, to quantify the extent of disagreement between
hypothesis and observation.




Summary & Thoughts (up to now)

* Score matching & pseudolikelihood vs MLE.

“ A kind of computational-statistical tradeoff. (See also follow up works e.g.
|Pabbaraju et al '23]...)

* Learning meets sampling.

* Proving LSI/ ATE has useful statistical implications!



A Teaser

* Message so far: vanilla score matching doesn’t work well with multimodal data and
large function classes

“ There are many ways to fix it. One popular method is learning the annealed
score functions (a type of diffusion model).

* But...could we use the vanilla score function anyway?



Inspiration from previous experiments

* Right: [Xie-Lu-Zhu-Wu "16]

* Train an energy-based model via

contrastive divergence (CD)
[Hinton '06]

* Key point: use training data to

e '
1n1t1ahze the S ampler - Figure 2. Generating object patterns. For each category, the first

row displays 4 of the training images, and the second row displays

+* An Old but effective method? 4 of the images generated by the learning algorithm.



Aside: what 1s contrastive divergence?

. Suppose py(x) = exp(fy(x) — log Z,)) where Z, = Jexp( Jo(x))

+ MLE: maximize [ log py(x) = Ef,(x) — log Z,

¢ Gradient: E Vf, — E, Vf,

* Run GD + approximate second expectation using data-based MCMC



Sampling multimodal distributions with the vanilla score

THM [K + Vuong ‘23+]: for mixtures of log-concave, Langevin with data-based
initialization + early stopping succeeds with any vanilla score matched model.
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Figure 1: Visualization of the distribution of the Langevin dynamics after 7" iterations when initialized
at the empirical distribution and run with an approximate score function estimated from data. Orange



Insights into contrastive divergence?

* Hyvarinen: score matching can be recovered as a limit of contrastive
divergence training as step size goes to zero.

* It seems CD implicitly fits the vanilla score function, so our theory applies.

1.0 A1

0.9 1

Figure 5: Score matching training loss (precisely the same loss used to train the models in Figures 2
and 3) curve for the CD-trained model in Figure 2. Although the score matching loss is not being
explicitly optimized, we see it goes down monotonically over the epochs of CD training nonetheless.
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Further Thoughts

* Please read our papers for more!
* What applications is vanilla score matching/CD the right approach for?

* Seems unlikely one approach to generative modeling is the best for all types
of data...

“ Clear benefits of pursuing a diversity of approaches. Otherwise, we would
still be using GANSs for everything.



