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Lecture 1 - Logistics and Intro to Sampling

1 Introduction

The goal of the course is to answer the following question: given a probability distribution P , how should
we generate a sample x ∼ P on a computer?

Definition 1. Probability Distribution: description of a distribution, sometimes implicit (a way to
compute the density p(x) for any x), sometimes just a characterization of P
In this class, will usually work with energy-based models.

Definition 2. Energy based models are probability distributions that take the form p(x) = 1
Z
exp(H(x))

where H(x) is our log-likelihood/energy. We generally assume H(x) is easy to compute

Definition 3. The partition function is denoted Z in the energy-based model. This is often hard to
compute and we generally regard as a constant. Sometimes we instead may work in terms of use logZ and
we denote that ”free energy” / ”cumulant generating function”

Definition 4. Exponential Family models, which include most common distributions, take form
pθ(x) =

1
Z
exp(⟨θ, F (x)⟩) where θ the is called the canonical parameter, F (x) the sufficient statistic

1.1 Example 1: Ising Model

Let:
x ∈ {±1}n where n is our dimension / ”number of sites.”
p(X) = 1

Z
exp(1

2
⟨X, Jx⟩+ ⟨h, x⟩) where J , h are parameters.

Note that it kinda looks like the gaussian p(x) ∝ exp(−1
2
⟨x− µ,Σ−1(x− µ)⟩)

If it helps, we can relate J , Σ−1 - they have a similar role. They encode interaction/covariation between
dimensions respectively.

1.1.1 2d Ising Model

In the 2d case, we define p(x) ∝ exp(β
2

∑
i∼j

xixj)
1

Here, β is our inverse temperature. So, as β gets bigger, the temperature gets cooler.

We can use a water metaphor to frame this:

1. At high temperature, water becomes gas

2. At medium temperature, water is a liquid

3. at low temperature, waster is a solid

4. At specific critical temperature in between states, properties change very rapidly (boiling point and
freezing point)

1notation Note: when talking about points in a graph, we use notation i ∼ j to denote neighbors on the graph
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Figure 1: Visual example of a sample from the 2d Ising model. Each node on our lattice has either positive
(+1) or negative (−1) magnetic spin

Our Ising model (and many others) works similarly.
At temperatures higher than the critical temperature, it looks basically IID.
But at temperatures lower than the critical temperature, it has ”plus phase” and ”minus phase” where
nodes are largely of the respective state with small pockets of the other.

The takeaway is as follows: with the same parameters, but different temperatures, the model can perform
very differently.
We need to be aware of this: one sampling algorithm might work well in one regime but not another.

As an aside: we can introduce a new term, σi,j ∼ Uniform{±1} such that p(x) ∝ exp(β
2

∑
i∼j

σi,jxixj)

This is called the Edwards-Anderson Model, or spin glass model. We don’t know how to sample from
in in 3d but, for scientific reasons people believe they know how it will behave. Cool.

1.2 Example 2: Uniformly Random Minimum Spanning Tree

we have a graph G = (V,E), where V denotes our set of vertices and E our set of edges.
we have a probability measure P (S) = 1

Z
1(S is a spanning tree) with S ⊆ E

So, sampling from this measure would generate a uniformly random spanning tree from the graph. But,
we need to define some terms first.

Definition 5. A spanning tree is a tree (connected graph with no cycles) that spans the graph (all
vertices are included)
The naive approach to sampling a uniformly random spanning tree is to enumerate over all subsets of edges
to find all the spanning trees. That’s a terrible algorithm: in worst case, requires evaluating 2n

2
subsets.

1.2.1 Down-Up Walk

The ”best” (fastest) algorithm is Down-Up Walk.
Starting with a spanning tree T on our graph G, the Down-Up part only consists of two steps:

1. Down step: pick an edge e ∈ T uniformly at random (u.a.r.). Remove it from the subgraph.

2. Up step: select an edge e u.a.r. from E such that its addition creates a spanning tree. Add it to the
subgraph.
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Figure 2: Spanning trees of a fully connected graph with three nodes.

The full algorithm is as follows:

Algorithm 1 Down-Up Algorithm

for t := 1 to tfinal do
Tt = DownUp(Tt−1)

end for

where T0 is any arbitrary spanning tree and out output is the last tree generated.
if we pick tfinal ≈ O(n log n), then we end up with a uniformly random spanning tree!

2 Determining an algorithm works

When evaluating a sampling algorithm, if we can show we end up sampling x ∼ P , then we have exact
sampling.
In practice, we sample x ∼ P ′ such that d(P, P ′) ≤ ϵ

2.1 Example: 1d Ising model

The 1d Ising model gives us the spin of nodes on a line, interacting with neighbors. Nodes take values
x ∈ {±1}
The pdf is defined p(x) = 1

Z
exp(β

∑
i∼j

xixj) where β ≥ 0 is our inverse temperature

As it turns out, computing our normalizing constant Z is actually really close to sampling!

We know, from the pdf, that

Z =
∑

x∈{±1}n
exp(β

∑
i∼j

xixj)

We we can compute this, but it’s very slow - O(2n).
in 1d, it’s easy to explicity write what it means to be a neighbor.

Z =
∑

x∈{±1}n
exp(β

n−1∑
i=1

xixi+1)
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Now, we can reframe out problem in terms of ”edges” yi = xixi+1 = 1 if xi = xi+1, else −1
Importantly, (x1, y) is a bijection of (x1, ..., xn)
pf:
Given x1, y
x2 = x2

1x2 = y1x1

x3 = x2
2x3 = y2x2

and so on...
The consequence is that, without losing any information, we can write:

Z =
∑
x1

∑
y∈

exp(
n−1∑
i=1

βyi)

In this form, it still takes O(2n) to calculate. But, it’s nicer - we just have a linear term yi in the exponential
in the inner sum instead of a quadratic term xixi+1.
We can keep reformulating:

Z =
∑
x1

n−1∏
i=1

(eβ + e−β)

= 2(eβ + e−β)n−1

= 2n cosh(β)n−1

So, we have a closed form for Z!.

We also know Pr(X1 = x1, y = y) = p(X) ∝ exp(β
∑
i∼j

xixj) =
∏n−1

i=1 exp(βyi) - We rewrite using the same

work as we used to find Z.
This factorizes!
So, we have:

P (Y1 = y1) =
exp(βy1)

exp(β) + exp(−β)

E[y1] =
exp(β)− exp(−β)

exp(β) + exp(−β)
= tanh(β)

which we can use to exactly sample from p(X)!

What are the takeaways?

1. It’s not immediately obvious from definition of the distribution how to sample from it

2. But finding the partition function (”counting”) gives us a big hint on how to sample from the
distribution
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