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Approximate Counting

Introduction
In this lecture we look at how to do approximate counting under Dobrushin condition and the tightness
of Dobrushin condition. Recall last time we have defined the Dobrushin influence matrix Rn×n:

Rij = sup
y∼j=z∼j

|π(xi = · | y)− π(xi = · | z)|

where π is a probability measure on
⊗n

i=1 Σi, and proved the following result due to Hayes and Wu:
Theorem 1. Denote P as the probability transition matrix of Glauber dynamics for a given probability
measure π and R as its influence matrix, then the second largest eigenvalue of P satisfies:

1− λ2(P ) ≥ 1− ∥R∥op
n

.

Therefore under the condition ”∥R∥op < 1− δ” for some small δ, which is called the Dobrushin unique-
ness condition, we can sample π efficiently using Glauber dynamics P . Today we are going to show that
we can also do approximate counting under Dobrushin condition. This also demonstrates the connection
between sampling and counting.

1 Approximate Counting
Consider the Ferromagnetic Ising model on a graph G, whose probability distribution takes the following
form:

πβ(x) =
1

Zβ

exp(β
∑
i∼j

xixj)

where x ∈ {±1}n, n is the number of vertices of G and i ∼ j means there is an edge between vertex i and
vertex j. Our goal is to compute Zβ =

∑
x∈{±1}n exp(β

∑
i∼j xixj). Recall the fact that unless P = NP,

there would be no polynomial time algorithm to compute Zβ exactly. However, under some conditions we
can compute Z approximately to any precision in polynomial time.

Let d denote the maximum degree of G, i.e., d = maxi
∑

j Aij, where A is the adjacency matrix of graph
G. Suppose Dobrushin condition is satisfied: β < 0.99/d, which implies 1 − λ2(P ) = Θ(1/n). We have
learned that under this condition we can sample πβ quickly. Today we will show that we can also compute
Zβ approximately under Dobrushin condition. Here ”approximate count” means that we can compute Ẑβ

in polynomial time such that Ẑβ ∈ [(1− ε)Zβ, (1 + ε)Zβ] for any ε > 0.

1.1 Naive Approach
A naive approach is motivated by reformulating Zβ as:

Zβ =
2n

2n

∑
x∈{±1}n

exp(β
∑
i∼j

xixj)

= 2nEx∼Unif{±1}n

[
exp(β

∑
i∼j

xixj)

]
.

1



Using sample average 1
m

∑m
a=1 exp(β

∑
i∼j x

(a)
i x

(a)
j ) to approximate the expectation, where x(1), · · · ,x(m)

are i.i.d. samples from Unif {±1}n, we can get Ẑβ:

Ẑβ(m) := 2n
1

m

m∑
a=1

exp(β
∑
i∼j

x
(a)
i x

(a)
j ).

By Law of Large Numbers, we know that:

1

m

m∑
a=1

exp(β
∑
i∼j

x
(a)
i x

(a)
j ) −→ E

[
exp(β

∑
i∼j

xixj)

]

as m → ∞. Therefore Ẑβ(m) → Zβ. The question is that to obtain an ε precision, how lager m needs to
take:

Consider the variance of Ẑβ(m):

Var
[
Ẑβ(m)

]
= 22n

1

m
Varx∼Unif{±1}n(exp(β

∑
i∼j

xixj)),

where

Varx∼Unif{±1}n

[
exp(β

∑
i∼j

xixj)

]
= E

[
exp(2β

∑
i∼j

xixj)

]
−

(
E

[
exp(β

∑
i∼j

xixj)

])2

=
1

2n
Z2β −

(
1

2n
Zβ

)2

.

(1)

By Chebyshev’s inequality,

P
(∣∣∣Ẑβ − Zβ

∣∣∣ ≥ εZβ

)
≤

Var
[
Ẑβ(m)

]
(εZβ)

2 .

Therefore in order to obtain an ε precision approximation, we need Var
[
Ẑβ(m)

]
≈ (εZβ)

2.

Example 1. We use 1D Ising model as an example to illustrate sample complexity required of the above
approach. We have computed the explicit formula for Zβ in the first lecture:

Zβ =
∑

x∈{±1}n

n−1∏
i=1

exp(βxixi+1) = 2n cosh(β)n−1

Compute the ratio of the two terms in (1):

Z2β/2
n

(Zβ/2n)2
=

2nZ2β

Z2
β

=
cosh(2β)n−1

cosh(β)2n−2
=

(
cosh2 β + sinh2 β

cosh2 β

)n−1

=
(
1 + tanh2 β

)n−1
.

Therefore,

Var
[
Ẑβ(m)

]
=

22n

m

[
1 +

(
1 + tanh2 β

)n−1
] Z2

β

22n

=
1 +

(
1 + tanh2 β

)n−1

m
Z2

β.

In order to get a (1 ± ε) approximation of Zβ, i.e. Var
[
Ẑβ(m)

]
≈ (εZβ)

2, m needs to be of order
1+(1+tanh2 β)

n−1

ε2
, which depends on n exponentially, hence is a very slow method.
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1.2 Simulated Annealing
Can we get a faster algorithm to compute Zβ? Take another look at the above method, what we actually
do is to write Zβ =

Zβ

Z0
Z0 Z0, where Z0 :=

∑
x∈{±1}n 1 = 2n, and compute the ratio Zβ/Z0 by sampling

from Unif {±1}n. This method is not efficient since Z0 is far from Zβ. We can get a more efficient method
by varying the temperature β (actually the inverse of temperature) slowly. To be more specific, we can
write Zβ as the following:

Zβ =
Zβ

Zβ k−1
k

·
Zβ k−1

k

Zβ k−2
k−1

· · ·
Zβ 1

k

Z0

Z0. (2)

Define δ = β/k. We need to estimate Zβ/Zβ−δ, then we can estimate Zβ−(l−1)δ/Zβ−lδ for any 2 ≤ l ≤ k
similarily. Using the same idea as in the above method, we can reformulate Zβ/Zβ−δ as the following:

Zβ

Zβ−δ

=
1

Zβ−δ

∑
x∈{±1}n

exp(β
∑
i∼j

xixj)

=
1

Zβ−δ

∑
x∈{±1}n

exp((β − δ)
∑
i∼j

xixj) · exp(δ
∑
i∼j

xixj)

= Ex∼πβ−δ

[
exp(δ

∑
i∼j

xixj)

]

Define ŷβ−δ(m) = 1
m

∑m
a=1 exp(δ

∑
i∼j x

(a)
i x

(a)
j ) where x(1), · · · ,x(m) are i.i.d. samples from πβ−δ. Note

that if πβ satisfies Dobrushin cnodition, i.e. β/d < 0.99, then it is clear that πβ−δ also satisfies Dobrushin
condition, thus we can get samples x(1), · · · ,x(m) from πβ−δ quickly.

Choose δ < 1/nd, so that δ
∑

i∼j x
(a)
i x

(a)
j ∈ [−1, 1]. Then exp(δ

∑
i∼j xixj) is a bounded random variable

and its variance is then bounded by some constant C(see Popoviciu’s inequality). Therefore

Var [ŷβ−δ(m)] =
1

m
Varx∼πβ−δ

[
exp(δ

∑
i∼j

x
(a)
i x

(a)
j )

]

≤ 1

m
· C .

In order to get a (1± ε) approximation of Zβ/Zβ−δ, m needs to be Θ( 1
ε2
).

Similarily we can compute other terms in (2) approximately:

ŷβ−lδ ∈
[
(1− ε)

Zβ−(l−1)δ

Zβ−lδ

, (1 + ε)
Zβ−(l−1)δ

Zβ−lδ

]
, ∀ 2 ≤ l ≤ k.

Finally we get the approximation Ẑβ:

Ẑβ = ŷβ−δ · ŷβ−2δ · · · ŷδ · 2n.

We further write it as
log Ẑβ = log ŷβ−δ + · · ·+ log ŷδ + n log 2.

According to the property of ŷβ−lδ,

log Ẑβ =

(
log

Zβ

Zβ−δ

± ε

)
+

(
log

Zβ−δ

Zβ−2δ

± ε

)
+ · · ·+ n log 2

= logZβ ± kε.

Denote ε′ = kε, we can get a (1± ε′) approximation of Ẑβ with total sample size Θ(kε−2). Since k = β/δ
and we choose δ to be less than 1

nd
, the total sample size depends on n polynomially.
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Remark 1. There are some different approches to approximately compute the partition function. For
example we can write Zβ as the following:

Zβ =
∑

x∈{±1}n
exp(β

∑
i∼j

xixj)

=
∑

x1∈{±1}

∑
x∼1

exp(β
∑
i∼j

xixj)

= Zβ(x1 = 1) + Zβ(x1 = −1)

= Zβ(x1 = 1) · Zβ(x1 = 1) + Zβ(x1 = −1)

Zβ(x1 = 1)
.

Define πβ(x1 = 1) =
Zβ(x1=1)

Zβ(x1=1)+Zβ(x1=−1)
, then we can compute Zβ by computing Zβ(x1 = 1) and πβ(x1 = 1).

Continue decomposing Zβ(x1 = 1) in terms of x2 in the same way, we can get the approximation of Zβ.

2 Tightness of Dobrushin
We show the tightness of Dobrushin condition in Curie-Weiss model, where every spin interacts with every
other spin with the same strength, i.e. Ising model on a complete graph. The distribution takes the
following form:

πβ(x) =
1

Zβ

exp

 β

2n

(
n∑

i=1

xi

)2
 .

If Dobrushin condition β < 0.99 is satisfied, then we know that Gibbs sampler mixes quickly. However
if β is larger than 1, say β = 1.0001, we would get stuck by ”torpid mixing”, and the eigengap in this
scenario is about 1−λ2 = exp(−Θ(n)). Hence Dobrushin condition is tight in the sense of getting samples
efficiently by Glauber dynamics.

This phenomenon is related to the property that the model undergoes a phase transition when β equals
1. Define M =

∑n
i=1 xi. Note that we have:

Zβ =
n∑

m=−n

exp

(
β

2n
m2

)
·# {x ∈ {±1}n | M = m} .

Since # {x ∈ {±1}n | M = m} =
{

n
(n+m)/2

}
, we can compute

P (M = m) ∝ exp

(
β

2n
m2 + log

(
n

(n+m)/2

))
= exp(nfn(m̃)),

then the where m̃ = m/n is the average magnetization and fn(m̃) = β
2
m̃2+ 1

n
log
(

n
n(1+m̃)/2

)
. we are intereste

in calculating the average magnetization m⋆ = argmaxP(m̃) as n → ∞. By stirling’s formula, we have
a closed form of fn(m̃), We can see there is a phase transition in β = 1. In the case of high temperature
(β < 1), the only maximum of P(m̃) is zero and when temperature is low (β > 1) there will be two maxima
symmetrically distributed on both sides of 0. We will discuss this phase transition process in detail in the
next lecture.
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