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Cheeger’s Inequality and the Random Cluster Model

1 The Last Couple of Lectures

• Dobrushin’s condition (sampling under weak dependence).

• Sampling is possible even though exact counting is hard (sampling ≈ approximate counting).

• Tightness of Dobrushin (Curie-Weiss), where the Glauber dynamics do not mix.

• Sampling algorithms beyond Glauber.

2 Curie-Weiss Model

We will show the phase transition at β = 1 for the Curie-Weiss model. Recall that the model is defined as
follows:

x ∈ {±1}n, π(x) =
1

Zβ

exp

 β

2n

(
n∑

i=1

xi

)2
 .

This model is exactly solvable (“integrable”). We use the following trick: For x ∼ π, define M =
∑n

i=1Xi.
The random variable M is called the “magnetization”.

π(M = m) =
∑

x:
∑

xi=m

π(x) = exp

(
β

2n
m2

)
·
(

n
n+m
2

)
.

Stirling’s approximation: log(n!) = n log n− n+O(log n). Recall that(
n

pn

)
=

n!

(pn)!((1− p)n)!
.

We compute that

log

(
n

pn

)
= n log n− n− (pn log pn− pn)− ((1− p)n log(1− p)n− (1− p)n)±O (log n)

= n

(
p log

1

p
+ (1− p) log

1

1− p

)
±O (log n)

= nH (Ber(p))±O (log n) .

Plugging this calculation into our expression for π(M),

π(M = m) = exp

(
β

2n
m2 + nH

(
Ber(

1

2
+

m

2n
)

)
±O (log n)

)
.

m̃ =
m

n
, π(M = m) = exp

(
n

(
β

2
m̃2 +Ber(

1

2
+

m̃

2
)

)
±O (log n)

)
.
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We define fβ(m̃) = n
(
β
2
m̃2 +Ber(1

2
+ m̃

2
)
)
. Taylor expanding around m̃ = 0 gives us

fβ(m̃) = H(Ber(
1

2
) +

β

2
m̃2 − 1

2
m̃2 +O

(
m̃4
)
,

where we used the fact that Ber(1
2
+ m̃

2
) is even in m̃.

Fact: when β ≤ 1, then fβ(m̃) is concave. By concavity, the global maxima of fβ is obtained at m̃ = 0.
Conversely, if β > 1, fβ is bimodal, with symmetric global maxima at m̃∗ and −m̃∗.

π
(
M̃ ∈ [m̃∗ − ε, m̃∗ + ε]

)
→ 1

as n → ∞ for any ε > 0. If m̃ is contained in this region, then fβ(m̃) < fβ(m̃∗ − δ for some δ > 0.
Consequently,

π(M̃ = m̃) ≤ exp (−δn±O (log n)) .

Taking a union bound, we get that

π
(
M̃ /∈ [m̃∗ − ε, m̃∗ + ε]

)
≤ n exp (−δn±O (log n)) .

In the bimodal case, this means the mass is concentrated entirely at the two modes, and there is no way
for the dynamics to cross between them.

We want to show that the Glauber dynamics is “torpidly mixing”. Rigorously, we want to show that
1− λ2(P ) = exp (−Θ(n)) when β > 1. Recall the Poincaré inequality:

Var(f) ≤ 1

1− λ2

1

n

n∑
i=1

E [Var(f |x∼i)] =
1

1− λ2

Eπ(f, f).

We see that it suffices to find one “bad” f where Var(f) ≫ E(f, f). We consider the following f :

f(x) = f(M) =


+1 if M ≥ 1,

−1 if M ≤ −1,

M otherwise.

One can verify that Var(f) = 1. However, if β > 1 we have that Ex∼i
[Var(f(x)|x∼i)] = exp (−Θ(n)),

because Ex∼i
[Var(f(x)|x∼i)] = 0 unless

∑
j ̸=i xj ∈ [−4, 4] and π(

∑
j ̸=i xj ∈ [−4, 4]) = exp (−Θ(n)) . Con-

sequently, we have that 1 ≤ 1
1−λ2

exp (−Ω(n)) , completing the proof. One can also show a matching lower
bound for the spectral gap. We have demonstrated a “bottleneck” for the dynamics.

3 Cheeger’s Inequality

Definition 1 (Bottleneck Ratio).

Φ = min
S:π(S)≤ 1

2

Ep(1S,1S)

π(S)
=

“surface area of S”

”volume of S”
.

The bottleneck ratio is a notion of isoperimetry. The following result shows that the bottleneck ratio
provides upper and lower bounds on the spectral gap.
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Theorem 1 (Cheeger’s Inequality).

Φ2

2
≤ 1− λ2 ≤ 2Φ.

The upper bound is referred to as the “easy direction” and the lower boud as the “hard direction”.

Proof idea: For the easy direction, given S, look at f(x) = 1{x∈S}, use the Poincaré inequality to show
that Var(f) ≤ 1

1−λ2
Ep(1S,1S). For the hard direction, consider level sets St = {x : f(x) > t}. Then prove

that if Ep(f,f)
Var(f)

is small, then there must exist t such that
Ef (fSt ,fSt )

π(St)
is small.

Exercise: verify that the easy direction is tight for {±1}n and the hard direction is tight for cycles.

4 What to do when Glauber fails to mix?

e.g. Curie-Weiss with β > 1, which have shown exhibits torpid mixing.

Theorem 2 (Jerrum-Sinclair ’93). For all graphs G, for any β ≥ 0, letting

π(x) =
1

Z
exp

(
β
∑
i∼j

xixj

)
,

there exists a poly(n, log 1
ε
) time sampler that achieves TV error ε.

How do we sample?

Z =
∑
x

∏
i∼j

exp (βxixj) ,

and note that βxixj = 2β
[
1[xi = xj]− 1

2

]
.

Fact: define p = 1− e2β, then e2β(δ−1) = 1− p+ pδ, for δ ∈ {0, 1}. Consequently,

Z ∝
∑
x

∏
i∼j

[1− p+ p1[xi = xj]] .

Definition 2 (Edwards-Sokal/Fortuin-Kasteleyn-Swendsen-Wang Coupling). For x ∈ {±1}n, y ∈ {0, 1}E,
define

µ(x, y) =
1

Z

∏
i∼j

[(1− p)1(yij = 0) + p1(xi = xj)1(yij = 1)] .

By the calculation above:

µ(x) =
∑
y

µ(x, y) = π(x).

On the other hand,

µ(y) =
∑
x

µ(x, y) ∝
∑
x

∏
i∼j

[(1− p)1(yij = 0) + p1(yij = 1)1(xi = xj)]

∝ p#{yij=1}(1− p)#{yij=0}
∑
x

1 (xi = xj ∀i, j s.t. yij = 1)

∝ p#{yij=1}(1− p)#{yij=0}2#connected components in y.
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This is known as the “Fortuin-Kasteleyn random cluster model”.

Fact:

µ(x|y) = µ(x, y)

µ(y)
=

1(x satisfies y)

2#connected components in y
.

Following from the above calculations:

µ(y|x) ∝
∏

i∼j:xi=xj

[(1− p)1(yij = 0) + p1yij = 1)]
∏

ij:x ̸=xj

[1(yij = 0)] ,

which is a product measure. This is known as the “Bond percolation” on {i ∼ j : xi = xj}.

Definition 3 (Swendsen-Wang Dynamics). The Swendsen-Wang dynamics are defined as follows:

1. Initialize at some x0 ∈ {±1}n.

2. For t = 1 . . . T :

(a) Sample y(t) ∼ µ(y = ·|x = x(t−1))

(b) Sample x(t) ∼ µ(x = ·|y = y(t))

Theorem 3 (Guo-Jerrum ’16). The Swensen-Wang dynamics have 1− λ2 = Ω
(

1
poly(n)

)
.

In fact, Guo and Jerrum prove this theorem by proving the following stronger result:

Theorem 4. The Gibbs sampler for y has 1− λ2 =
1

poly(n)
.

They then reduce the previous theorem to this one.
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