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Down-Up Walks and Spectral Independence

1 Overview

• Last time, we introduced Down-Up Walks, Matroids, and Basis Exchange Walks

• Anari-Liu-Oveis-Gharan-Vinzant ’19 Theorem: if the generating polynomial of µ is log-concave, then
1− λ2(P ) = Ω(1/k) (µ is uniform probability measure on matroids, or prob measure on

(
[n]
k

)
)

• Today we will focus on proving the theorem

2 Log Concavity and Generating Polynomials

Definition 1. The generating polynomial is gµ(λ) =
∑

S∈([n]
k )

µ(S)
∏

u∈S λu [where λ = (λ1, · · · , λn)]

Definition 2. The tilt is the probability measure on
(
[n]
k

)
such that (µ ⋆ λ)(S) ∝ µ(S)

∏
u∈S λu

Remark 1. Some notes:

• µ = µk is a measure on
(
[n]
k

)
, which can be interpreted as faces of a simplical complex

• Then µk−1 = µDk→k−1; where Dk→k−1 is a Down operator that drops an element uniformly at random

• For this analogy, µ1 is an induced measure on vertices, and µ2 is that for edges

• Note that µ1 is not necessarily uniform; consider the star graph

We can express (µ ⋆ λ)(S) = 1
gµ(λ)

µ(S)
∏

u∈S λu, where gµ(λ) is the normalizing constant for (µ ⋆ λ).

Example 1. Spanning trees on a graph G = ([n], E)

• Define µ(S) ∝ 1(S is a spanning tree of G), where S ∈
(

E
n−1

)
• Then (µ ⋆ λ)(S) ∝ 1(S is a spanning tree of G)

∏
e∈S λe

• Previously, we saw how to sample µ, (µ ⋆ λ) via Kirchoff Matrix-Tree Theorem (see Lecture 2)

• Recall Z = det(Lλ,µ) [weighted by λ]

Definition 3. µ (or gµ) is log-concave if log gµ(λ) is concave on Rn
>0

Remark 2. Why do we care about this definition? When is gµ(λ) concave?

• This happens exactly when gµ has degree 1

• Note gµ(z, · · · , z) = (coeff)(zk) is concave iff k ≤ 1

• Meanwhile, log(zk) = k log(z) is concave for z > 0
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Note that since gµ(S) =
∑

S µ(S)
∏

i∈S λi, we have ∂λj
(gµ(S)) =

∑
S s.t.j∈S µ(S)

∏
i∈S\{j} λi.

Also note that ∂λj
log(gµ(λ)) =

∂λj gµ(λ)

gµ(λ)
.

Computation 1. Next we compute the Hessian of the log generating polynomial at λ =
−→
1

• Clearly gµ(
−→
1 ) = 1

• Then ∂λj
log(gµ(λ))|λ=−→

1
= ∂λj

gµ(λ)|λ=−→
1
=

∑
S s.t.j∈S µ(S) = Prµ[j ∈ S]

• For i ̸= j, ∂λi
∂λj

log(gµ(λ))λ=−→
1
=

(gµ(∂λi∂λj gµ(λ))−(∂λigµ)(∂λj gµ)

gµ(λ)2
|
λ=

−→
1
= (∂λi

∂λj
gµ)−(∂λi

gµ)(∂λj
gµ)|λ=−→

1
=

Prµ[i ∈ S, j ∈ S]− Prµ[i ∈ S]Prµ[j ∈ S]

• For i = j, ∂2
λi
log(gµ(λ)) = ∂λi

∂λigµ(λ)

gµ(λ)
|
λ=

−→
1
= − (∂λigµ(λ))

2

gµ(λ)2
|
λ=

−→
1
= −Prµ[i ∈ S]2

Computation 2. When is this Hessian negative semidefinite?

• Note that Cov(X) = E[XXT ]− E[X]E[XT ], so Cov(1S) ≽ 0

• Also ∂λi
∂λj

log(gµ(S)) = Cov(1S)i,j

• Hence ∇2 log(gµ(λ))|λ=−→
1
= Cov(1S)−diag(Prµ[i ∈ S, i ∈ S]−Prµ[i ∈ S]2)+diag(−Prµ[i ∈ S]2) ≼ 0

if and only if (0 ≼) Cov(1S) ≼ diag(Prµ[i ∈ S]) = diag(E[1S])

3 Spectral Independence

Definition 4. µ is C-spectrally independent if CovS∼µ(1S) ≼ C · diag(E[1S])

Hence from the previous computations, µ log-concave implies 1-spectral independence, since this necessity
condition comes from evaluating the Hessian at λ =

−→
1 .

Theorem 1. [AJKPV ’24] Suppose P is the down-up walk and 1− λ2(P ) = 1
Ck

, then µ is C-SI.
This theorem shows that spectral independence is necessary for a large spectral gap, although we won’t
be using it for proving the direction we want to prove.

C-SI is necessary for rapid mixing, next we show 1-SI is sufficient for rapid mixing.

Definition 5. (Induced measure at link S) Let S ⊆ [n], |S| < k. Define µS(T ) ∝ µ(S ∪ T ) for T ∩ S = ∅,
|T |+ |S| = k. Note µS(T ) ↔ PrR∼µ(·|S ⊆ R).

Fact 1. gµ log-concave ⇒ gµS
log-concave ⇒ µS is 1-SI

We can prove this with the observation gµS
(λ∼S) ∝ limr→∞

gµ(r1S ,λ∼S)

r|S| , then take the log, etc.

Fact 2. (µ ⋆ λ) is 1-SI for all λ

We don’t use this fact in our proof, since we only need to evaluate at λ =
−→
1

Note gµS
(λ∼S) =

∑
T µ(S ∪ T )

∏
i∈T λi =

∑
S⊆R µ(R)

∏
i∈R\S λi

∏
i∈S 1

Theorem 2. Suppose µ is 1-SI at all links, then 1− λ2(P ) ≥ 1/k [here P = Dk→k−1Uk−1→k]
In the lecture notes, the RHS was written as

∏k−2
i=0 (1−

1
k−i

), which is the same as 1/k by telescoping
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For a brief sketch of the proof, first note that the Poincaré inequality for P is equivalent to V ar(f) ≤
1

1−λ2
ESk−1∼µk−1

V ar(f(S)|Sk−1). The proof is basically the same as that in Glauber Dynamics.

Recall 1. The Law of Total Variance says V ar(f) = E[V ar(f(S)|∆1] + V ar(E[f(S)|∆1]), where S =
{∆1, · · · ,∆k}

Lemma 1. C-SI is equivalent to V ar(E[f(S)|∆1]) ≤ C
k
V ar(f) [proof next class]

Assuming this lemma, we can use the Law of Total Variance to bound (1− 1
k
)V ar(f) ≤ E[V ar(f(S)|∆1],

then 1-SI at all links lets us show (1 − 1
k−1

)V ar(f(S)|∆1) ≤ E[V ar(f(S)|∆1,∆2], then combining these

give us (1− 1
k
)(1− 1

k−1
)V ar(f) ≤ E[V ar(f(S)|∆1,∆2], etc. and use induction to prove the theorem.
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