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Down-Up Walks and Spectral Independence

1 Overview

e Last time, we introduced Down-Up Walks, Matroids, and Basis Exchange Walks

e Anari-Liu-Oveis-Gharan-Vinzant '19 Theorem: if the generating polynomial of p is log-concave, then
1 — X (P) =Q(1/k) (u is uniform probability measure on matroids, or prob measure on ([Z]))

e Today we will focus on proving the theorem

2 Log Concavity and Generating Polynomials

Ay [where A = (A1, -+, A)]

Definition 1. The generating polynomial is g,(\) = ZSE([Z]) 1(S) [ Tues

Definition 2. The tilt is the probability measure on ([Z]) such that (pux A)(S) oc pu(S) [[,eq A

ues \u
Remark 1. Some notes:
® /i = [t iS a measure on ([Z]), which can be interpreted as faces of a simplical complex
e Then py_1 = pDg__1; where Dy_,;_1 is a Down operator that drops an element uniformly at random
e For this analogy, 1 is an induced measure on vertices, and us is that for edges
e Note that p; is not necessarily uniform; consider the star graph
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We can express (p* \)(S) = g#(/\)u(S) [L.cs Aus where g,(A) is the normalizing constant for (u+ A).

Example 1. Spanning trees on a graph G = ([n], E)
e Define 11(S) o< 1(S is a spanning tree of G), where S € ( 7))
e Then (p1x A)(S) oc 1(S is a spanning tree of G) []..q Ae
e Previously, we saw how to sample p, (pu* A) via Kirchoff Matrix-Tree Theorem (see Lecture 2)
e Recall Z =det(L, ) [weighted by A]
Definition 3. p (or g,) is log-concave if log g,()\) is concave on RZ
Remark 2. Why do we care about this definition? When is g, (\) concave?
e This happens exactly when g, has degree 1

e Note g,(z, -+ ,2) = (coeff)(z¥) is concave iff k < 1

e Meanwhile, log(z*) = klog(z) is concave for z > 0



Note that since g,(S5) = 35 u(S) [L;es Ais We have Oy (9,(5)) = > 51 jes 1#05) [ics\ 5y M-

8)\j 9u (A)
gu()\) ’

Also note that 9y, log(gu(A)) =
Computation 1. Next we compute the Hessian of the log generating polynomial at A = T
e Clearly gM(T) =1
o Then 0x;10g(g.(A\)|\_5 = I 9u(N o7 = Dg v jes #(S) = Prulj € 5]
_ (9u(93;0x;91(AN) = (02, 9) (9x; 9)

o Fori # j, 05,05, log(gu(N)),_7 = PROE ot = (02,05, 91) = (0x,91) (Ox,90) -7 =
Pr,jieS,j€S]—Pr,ieS|Pr,jes]

8Aigl4(/\)

(03,94 (N))?
Toa) =T C

o7 =7

e Fori = j, & log(g,(\) =

= —Pr,li e S)?

Computation 2. When is this Hessian negative semidefinite?
e Note that Cov(X) = E[XXT] — E[X]E[XT], so Cov(1g) =0
o Also 05,05, log(gu(S)) = Cov(Lg);

e Hence V?1log(g,(N))|,_7 = Cov(ls)—diag(Pr,[i € S,i € S]—Pr,[i € S)*)+diag(—Pr,[i € S]*) <0
if and only if (0 ) Cov(1g) < diag(Pr,[i € S]) = diag(E[1g])

3 Spectral Independence
Definition 4. p is C-spectrally independent if Covg.,(1ls) < C - diag(E[1g])

Hence from the previous computations, p log-concave _i>mplies 1-spectral independence, since this necessity
condition comes from evaluating the Hessian at A = 1.

Theorem 1. [AJKPV ’24] Suppose P is the down-up walk and 1 — X\y(P) = &7, then p is C-SL.

This theorem shows that spectral independence is necessary for a large spectral gap, although we won’t
be using it for proving the direction we want to prove.

C-SI is necessary for rapid mixing, next we show 1-SI is sufficient for rapid mixing.

Definition 5. (Induced measure at link S) Let S C [n], |S| < k. Define ug(T) oc u(SUT) for TNS =0,
|T| + |S| = k. Note us(T) <> Prr,(-|S C R).

Fact 1. g, log-concave = g,,, log-concave = ug is 1-SI
We can prove this with the observation g, (Avg) o lim, 0 %, then take the log, etc.

Fact 2. (ux A) is 1-SI for all A R
We don’t use this fact in our proof, since we only need to evaluate at A = 1
Note gus(Avs) =2 p (S UT) [Lier Ai = ng}z () Hz‘eR\S Ai[Ties 1

Theorem 2. Suppose p is 1-SI at all links, then 1 — Ao(P) > 1/k [here P = Dy 1Uk_1-x]
In the lecture notes, the RHS was written as Hf:_OQ (1 — &), which is the same as 1/k by telescoping



For a brief sketch of the proof, first note that the Poincaré inequality for P is equivalent to Var(f) <
ﬁEsk_lwk_lVar(f(S)|Sk_1). The proof is basically the same as that in Glauber Dynamics.

Recall 1. The Law of Total Variance says Var(f) = E[Var(f(S)|A1] + Var(E[f(S)|A1]), where S =
{Ar, - Ay}

Lemma 1. C-SI is equivalent to Var(E[f(5)|A1]) < £Var(f) [proof next class]

Assuming this lemma, we can use the Law of Total Variance to bound (1 — 1)Var(f) < E[Var(f(S)|A],
then 1-SI at all links lets us show (1 — =5 )Var(f(S)|A1) < E[Var(f(S)|A1, As], then combining these

give us (1 — £)(1 — Z5)Var(f) < E[Var(f(S)|A1, Ag), ete. and use induction to prove the theorem.
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