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Statement of trickle-down, log-concavity for matroids

Last Time:

Some topics we covered last time were:

• Generating polynomials

• Log-concave distributions and polynomials

• Log-concavity implies 1-spectral independence at all links (where link = conditional measure)

• Statement of the ”local-to-global” theorem [..., Alev-Lau ’18, ...] which shows 1-spectral independence
implies a spectral gap

• We saw the proof given a certain lemma.

Goals for Today:

The goal of this lecture is to continue to prove rapid mixing for the basis exchange walk.
In particular, we will:

1. Finish proving the Local-to-Global Theorem

2. Show most of the proof that the uniform distribution on the basis of a matroid is log-concave

• We will prove this using ”Oppenheim’s Trickdown”, a foundational result in the field, which we
will prove next time.

1 Local-to-Global

Last time, we almost proved this result, except for not proving one lemma. Instead of just proving that
lemma, we will first introduce some definitions for context and to prove the statement more generally.

First, we define more general down and up operators. Previously, we defined down up operators to go
from sets of size k to k − 1 and vice versa.

Definition 1. Higher Order Down Up Operators
We define the down operator that goes from sets of size k to sets of size l as

(δSDk→l)T =
1(
k
l

)1(T ⊂ S)

where we drop k − l elements uniformly at random.
Then, using the same Bayes rule calculation as before, the up operator from a set of size l to one of

size k is
(δTUl→k)S ∝ µ(S)1(T ⊂ S)
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where we sample from the posterior on S where we generate the set T using the down operator: S
Dk→l→ T .

Altogether then, we define our transition matrix as Pk↔l = Dk→lUl→k for k > l.
These definitions will allow us to state the Local-to-Global argument for more general distributions,

where last time we only covered 1-SI distributions. First, recall the definition of spectral independence.

Definition 2. µ is C-SI if
Covµ(1S) ⪯ C diag(E[1S])

Recall that if µ is log-concave, then µ is 1-SI. That is, each link measure µS is 1-SI for all S.

Theorem 1. Suppose µ is C-SI at all links. Then

1− λ2(Pk↔l) ≥
l−1∏
i=0

(
1− C

k − i

)
Note that provided k − l is order 1, we can crudely approximate the RHS via 1

kC
. Further, note that

this generalization indicates that the statement is most powerful for C = 1 and less so for larger C, though
still indicating polynomial time mixing.

Exercise 1. Show there exists 2-SI measures where Pk↔k−1 is not ergodic.

Before proving the theorem, we will state a fact and state and prove a key lemma.

Fact 1. E[f | s1] = U1→kf

Lemma 1. C-SI implies Var[U1→kf ] ≤ C
k
Var[f ]

Proof. (of lemma) ( =⇒ )
Note that the inequality is equivalent to λ2(Pk↔1) ≤ C

k
, essentially by definition. To see this, note that

with E[f ] = 0, the inequality is equivalent to ⟨f, f⟩µ = ⟨f,Dk→1U1→kf⟩µ = ⟨U1→kf, U1→kf⟩µ ≤ C
k
⟨f, f⟩µ

which is the variational representation of the second largest eignevalue. In fact, this second inequality is
also equivalent to C − SI. We will only prove the forward direction below, however.

So now, to show the lemma, we would like to show that C − SI implies λ2(Pk↔1) ≤ C
k
.

First, note that second eigenvalue is invariant to the order of down and up operators: λ2(Pk↔1) =
λ2(P1↔k), where P1↔k is a walk on sets of size 1, which is ideal because the transition matrix for this
up-down walk can be easily written explicitly. Observe:

(P1↔k))ij =
1

k
µ(j ∈ S | i ∈ S) =

1

k

µ(i ∈ S, j ∈ S)

µ(i ∈ S)

Define the matrix of marginals M1 = diag(µ1) where we define each marginal as µ1(i) =
1
k
µ(i ∈ S). So

then

M1P1↔k =
1

k2
µ(i ∈ S, j ∈ S)

and subtracting away the top eigendirection gives us

M1P1↔k − µ1µ
T
1 =

1

k2
Cov(1S) ⪯

C

k
M1

where in the inequality we have applied spectral independence.
Thus, taking Eµ1 [f ] = 0 WLOG, we have recovered

⟨f, Pf⟩µ = ⟨U1→kf, U1→kf⟩µ ≤ C

k
⟨f, f⟩µ

the variational representation of the second eigenvalue of the up-down walk, which we know is equal to
the second eigenvalue of the down-up walk. So we are done.
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Proof. (of Theorem 1):
We proceed as last time. Define S = {s1, . . . , sk}
By the law of total variance,

Var[f ] = E[Var[f | s1]] + Var[E[f | s1]] (1)

= E[Var[f | s1]] + Var[U1→kf ] [fact 1] (2)

≤ E[Var[f | s1]] +
C

k
Var[f ] [lemma 1] (3)

=⇒
(
1− C

k

)
Var[f ] ≤ E[Var[f | s1]] (4)

Applying the same argument inducitvely to the right-hand side yields the desired result.

In summary: Log-concavity implies 1-SI implies Ω(1/k) sepctral gap.

2 Log-Concavity of Generating Polynomial for Matroids

Recall a set of bases B ⊆
(
[n]
k

)
are the bases of a matroid M if it satisfies an exchange property: ∀S, T ⊆ B,

∀s ∈ S \ T , ∃t ∈ T \ S, such that (S \ {s}) ∪ {t} ∈ B. It may be useful to think of B as a very special set
of a graph where B is the edge set and [n] is the vertex set.

Exercise 2. Use this to prove the down-up walk is ergodic.
We now present two theorems. We will prove the first theorem via using the second (trickle-down) and

checking a base case.

Theorem 2 (ALOV ’24). Define the uniform measure µ = Unif(B). Then the generating polynomial

gµ(λ) =
∑
S

µ(S)
∏
i∈S

λi

is log-concave, i.e. log(gµ) is concave on Rn
>0.

Theorem 3. (trickle-down) Suppose that {µi} are C-SI for all i and further suppose that Pk↔1 is ergodic.
Then µ is C’-SI for

C ′ =
C(k − 1)

k − 1− C

Corollary 1. C = 1 =⇒ C ′ = 1 so if you have 1-SI at a link, we get 1-SI at the link above ans so on.
In this sense, we can say that 1− SI ”trickles-down”.

Proof. (of Theorem 2)
We will apply theorem 3 (trickle-down) to matroids to prove theorem 2. Most of what we will do is

check the base case (k=2). This consists of verifying the generating polynomial is log-concave (i.e. the
measure is 1-SI for all links). Then, trickle-down gives us that all links of µ are 1-SI. In fact, all tilts µ ∗ λ
are 1-SI (and so log-concave).

Thus, it suffices to check the base case and ensure it satisfies 1-SI. We will first prove the result without
external fields. That is, if µ = Unif(B), where B ⊆

(
[n]
2

)
, then µ is 1-SI. This is the main task of this

lecture.
We will prove the following key lemma. Once we have that B is a complete multipartite graph, we are

almost done because it is simple to show such graphs have adjacency matrix with small second eigenvalue.

Lemma 2. B is a complete multipartite graph (when we ignore isolated vertices)
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Proof. (of lemma 2) The key lemma follows from some observations.
Observation 1: Suppose we have edges {i, j} and {k, l}. By the exchange property if we drop j from

{i, j} then either {i, k} ∈ B or {i, l} ∈ B. In particular, the graph distance d(i, l) ≤ 2 for every vertex l
because either l is a neighbor of i or by the exchange property l is a neighbor of a neighbor of i. Therefore,
G = ([n], B) has diameter at most 2.

So, we are working with a particularly special graph. To prove it is multipartite, we use the following
lemma.

Lemma 3. Suppose i and k are not neighbors. If i ∼ j then j ∼ k.

Proof. (of lemma 3) The Graph has diameter 2 so there exists some neighbor l such that i ∼ l and k ∼ l.
Consider {k, l}. Dropping k, by the exchange property we must be able to add i or j and have it be in B.
Because we already know i and k are not neighbors, we know that j ∼ k, as desired.

Using Lemma 3, it is easy to see that B is indeed a complete multipartite graph. Consider all the
vertices k such that i and k are not neighbors and call them a part. Then all the vertices to which i
connects also connect to all of the vertices in that part, by lemma 3. Then repeating this argument gives
us the desired result: that is, we have a multipartite graph. That is, Lemma 3 implies Lemma 2.

The next lemma is an important result from spectral graph theory.

Lemma 4. Let A be the adjaceny matrix. λ2(A) ≤ 0.

Proof. There are many ways to prove this. For example:
Consider 11T −A. Then this is a block diagonal matrix (with each block consisting of all ones) where

each block corresponds to the different parts of the multipartite graph (because we know each part of
the graph has no connections within). Say there are r blocks. This is a rank r matrix with eigenvalues
0, . . . , 0, n1, . . . , nr. The eigenvector associated with n1 is [1n1 , 0, . . . , 0].In particular, 11T ⪰ 0 so A ⪯ 11

T

so λ2(A) ≤ 0 by the variational characterization.

At this point, it is worth recalling what our goal is. We want to prove 1-SI is equivalent to λ2(P2↔1) ≤ 1
2
.

It is unclear at this point how the eigenvectors of P relate to the eigenvectors of A. So we need the following
(key) lemma.

Lemma 5. Consider A symmetric and with non-negative entries. Then λ2(A) < 0 if and only if

(xTAx)(vTAv) ≤ (XTAv)2

for all x ∈ Rn and v ∈ Rn
>0.

Proof. First prove the forward direction.[
vT

xT

]
A
[
vx

]
=

[
vTAv vTAx
xTAv xTAx

]
The determinant of this matrix M is (xTAx)(vTAv) − (XTAv)2. vTAv > 0 implies that M has a pos-
itive eigenvalue. But λ2(A) < 0 implies that M has to have a negative eigenvalue. So the determinant
λ1(M)λ2(M) < 0, yielding the result.

Now we prove the reverse direction. Note that by the PSD inequality

A ⪯ AvvTAT

vTAv

which is rank one matrix so λ2(A) ≤ 0 and we are done.
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Using Lemma 5, λ2(A) < 0 is equivalent to λ2(DAD) < 0 for any D diagonal matrix with positive
entries.

Again, we would like to show λ2(P2↔1) ≤ 1
2
. Looking at the active random walk D−1A, with

D = diag(deg(i)), we would like λ2(D
−1A) ≤ 0 which is equivalent to λ2(D

−1/2AD−1/2) ≤ 0 which is
equivalent to λ2(A) ≤ 0 (because eigenvalues are invariant to appropriate change of bases) which we know.

Finally, we would like to extend the result to the case with external fields. gµ is a quadratic polynomial.
The Hessian

∇2
λ log(g(λ1, . . . , λn)) =

g(λ1, . . . , λn)∇2
λg(rλ1, . . . , λn)− (∇g)(∇g)T

g(λ1, . . . , λn)2

Using g(z) = 1
2
zTAz for some A and ∇g = Az and ∇2g = A, then ∇2 log g |1≤ 0 so

A ≤ AzzTAT

zTAz

and recall this as an equivalent characterization that λ2(A) ≤ 0. Putting it together, we showed the above
inequality for some z, which shows λ2(A) ≤ 0, which implies the inequality for all z.

In total, given trickle-down, we proved log-concavity of the generating polynomial, so 1−λ2(Pk→k−1) ≤
Ω(1/k) for all bases of matroids. In particular for a a connected graph, spanning trees are bases for the
”graphic matroid” so we proved rapid mixing for the down-up walk on spanning trees. This is much faster
and more practical than the algorithm we saw previously.
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