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Sampling and Counting Spanning Trees

Inputs

Let G = (V,E) be a graph, where V = [n] is the vertex set and E ⊂
(
V
2

)
is the the edge set.

Goal

We would like to output a random X from the uniform measure on {spanning trees of G}

Spanning trees are acyclic subgraphs (i.e., subsets of edges) which are connected and span all ver-
tices.

A naive runtime for doing this is 2|E|

In this lecture, we will analyze an algorithm that is not optimal, strictly speaking. However, it will
be easier to analyze.

Our strategy will be to calculate the partition function

Z = #{spanning trees of G}

We will then provide a sampling algorithm at the end of these notes.

Theorem (Kirchoff matrix tree)

Let A be the adjacency matrix of G.

Aij =

{
1 i ∼ j

0 otherwise

Let D be the degree matrix. It is diagonal.

Dii =
∑
j

Aij =: deg(i)

The Laplacian matrix L will be the difference between these two matrices.

L := D − A

A naive guess might be Z = det(L). However, the determinant of L is actually 0. This follows from
observing 1TL1 = 0, where 1 ∈ Rn is a vector of 1’s.

We can remove the collinearity simply by deleting the first row and first column, or the j-th row and
j-th column for that matter, for arbitrary j. This turns out to be the correct answer.

Z = det(L¬1,¬1) = det(L¬j,¬j), ∀j ∈ [n]
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An Aside on Determinants

Observe that we can define a determinant as follows, for general matrix M ∈ Rn×n.

det(M) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Mi,σ(i)

Note that σ : [n] → [n] is a bijection and that sgn(σ) ∈ {±1} is 1 if and only if “the permutation can be
obtained with an even number of transpositions (exchanges of two entries)” (source: Wikipedia).

In practice, a more computationally efficient way of computing the determinant is to perform an LU-
decomposition:

det(M) = det(L) · det(U) (1)

The determinants of L and U are simply the product of their diagonal entries, given their triangular
structure.

Intuition on Laplacians

Let f ∈ Rn or similarly f : [n] → n. The difference is simply notational.

fTLf =
∑
i∼j

(f(i)− f(j))2

“ = ”|∇f |22 (The size of the gradient of f)

We can think of ∇f : E → R, where (∇f)ij = f(i)− f(j) for i < j.

Note that, in calculus, the Laplacian of f refers to ∆f =
∑

i ∂
2
i f

We can see further connections via Green’s theorem (f, g : Rd → R):∫
f∆g = −

∫
⟨∇f,∇g⟩

Therefore, one can view the Laplacian of f as the divergence of the gradient of f .

∆f = ∇ · (∇f)

In our context, we will only consider f such that the first entry (or j-th entry) is always 0.

fTL¬1,¬1f = (0, f)TL(0, f)

Proof of Theorem

Special Case

Let us first consider the special case of where n is equal to the number of edges plus 1.

n = |E|+ 1

This is an interesting special case because, in a tree, the number of edges equals the number of vertices
minus 1.
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Claim 1. Z = 1 iff G is connected (or, equivalently, iff G is a tree)

Proof. Observe the following (where ei is the i-th standard basis vector of Rn):

L =
∑
i∼j

(ei − ej)(ei − ej)
T

= BBT

Note that B ∈ Rn×(n−1) and column r of B is ei − ej, where (i, j) is the r-th edge of G.

We also observe that L¬n,¬n = B¬nB
T
¬n, where B¬n is B with the n-th row removed.

Therefore, det(L¬n,¬n) = det(B¬n)
2

Hence, we want to show det(B¬n) ∈ {±1} iff G is a tree.

Observe the following:

det(B) = det(BT )

=
∑

σ∈Sn−1

sgn(σ)
n−1∏
a=1

Bσ(a),a

We know the following about Bσ(a),a:

Bσ(a),a =

{
±1 if σ(a) is a neighbor of edge a

0 o/w

The following must hold:

• Each edge a picks a neighbor σ(a)

• No two edges can pick the same vertex

• No edges can pick vertex n

Only 1 σ can satisfy all of these criteria. As a result, det(BT ) = ±1

General Case

Let L = BBT , where B ∈ Rn×|E|

We introduce the following notation, where B¬1 ∈ R(n−1)×|E|:

M := L¬1,¬1 = B¬1B
T
¬1

Using the Cauchy-Binet formula (which we will prove later):

det(M) =
∑
S⊂E

|S|=n−1

det[(B¬1)·,S(B
T
¬1)S,·] (Laplacian for G = (V, S), i.e. removing one vertex)

=
∑
S⊂E

|S|=n−1

1S is a spanning tree

= # of spanning trees

This concludes the proof of the theorem.
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Aside: Proof Sketch of Cauchy-Binet

Let A ∈ Rn×m and B ∈ Rm×n, where n ≤ m

Let λi(·) refer to the i-th eigenvalue

Observe that det(AB) =
∑

S:|S|=n det(A·,SB·,S). One way to see this is to observe that the left-hand

side equals
∏n

i=1 λi(AB) (since a determinant is simply the product of the eigenvalues), and this product
in turn equals

∏m
i=m−n+1 λi(BA). This follows from the general fact that λi(AB) = λm−n+i(BA)1.

To help clarify how we index our eigenvalues, note that rank(AB) = rank(BA) ≤ n and λ1, . . . , λm−n = 0

We can then conclude that
∏m

i=m−n+1 λi(BA) =
∑

S:|S|=n det(A·,SB·,S) by making the following obser-

vations about the characteristic polynomial (swapping addition for where we normally see subtraction):

det(zI +BA) =
m∏
i=1

(z + λi)

= zm−n

m∏
i=m−n+1

(z + λi)

To provide intuition on our earlier statement that λi(AB) = λm−n+i(BA) in general, one can observe the
following, where v is an eigenvector of AB with eigenvalue λ:

BA(Bv) = B(ABv) = λBv (2)

Therefore, Bv is an eigenvector for BA with eigenvalue λ.

How to Sample

We will work with an autoregressive sampler, i.e., of the form

P (X) =
n∏

i=1

P (Xi | X1, . . . , Xi−1)

Let’s sample an intermediate quantity, Y1 ∼ Bernoulli(P (edge 1 is in T )). If Y1 = 0, we will delete edge 1.
Otherwise, we will keep it.

Note that

P (edge 1 is in T ) =
# of spanning trees with edge 1

total # of spanning trees

Then, we will sample Y2 ∼ Bernoulli(P (edge 2 is in T | Y1)), where

P (edge 2 is in T | Y1 = 1) =
# of spanning trees with edge 2 and edge 1

total # of spanning trees with edge 1

Similarly,

P (edge 2 is in T | Y1 = 0) =
# of spanning trees with edge 2 but without edge 1

total # of spanning trees without edge 1

1This fact will be very useful in subsequent lectures
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We continue this sampling procedure for Y1, . . . , Y|E| and have thus sampled a spanning tree.

Note: counting the number of spanning trees containing edge 1 can be done by merging the adjacent
vertices and summing the corresponding rows of the adjacency matrix. This uses the fact that we can
count spanning trees on weighted graphs, which we will discuss more next lecture.
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