
STAT 31512 Spring 2024 Scribe: Kexiang Wang
March 25, 2024 Lecturer: Frederic Koehler
These notes have not received the scrutiny of publication. They could be missing important references, etc.

Counting and Complexity Theory

1 Review of last time

Last time, we solved problem: for a given graph G = (V,E), how to sample the spanning tree of this graph
uniformly.

To solve this problem, we showed the that:

Z = det(L∼1,∼1)

where Z is the number of spanning trees of G and L = D − A is the graph Laplacian.
But we actually solved a more general problem, where we could put weights on each edges. Let λe ∈ R≥0

be the weight of each edge. The we can define the probability measure for S ⊂ E:

Pλ(S) =
1

Zλ

1{S is a spanning tree} ·
∏
e∈S

λe

Here is a example of a given graph:

4

1

2

3

We know that there are 3 different spanning trees in this graph. We can delete edge2,4, edge2,3 and
edge 3,4 to get 3 different spanning trees. If we set λ3,4 = 10100, and λ2,3 = λ2,4 = 1, we can find by the
definition:

P(edge 3,4 is deleted in the tree) ∼ 10−100

and

P(edge 2,3 is deleted in the tree) = P(edge 2,4 is deleted in the tree) ∼ 1

2
− 10−100 ∼ 1

2
By similar argument, we can also show that

Zλ = det(L∼1,∼1)

This means that we can compute Zλ exactly in polynomial time. However, if we consider the general
energy-based model for x ∈ {−1, 1}n:

p(x) =
1

Z
exp(H(x))

Can we find a algorithm to compute Z in polynomial time? The answer is no. There are cases that we
can compute H(x) in polynomial time, but we cannot compute Z in polynomial time.

1

2 Introduction of complexity theory

Here, we introduce some basic concepts in complexity theory in compute science.
3-SAT: ”NP-complete” problem:
Input: Formula in variable (y1, y2, ..., yn) ∈ {0, 1}n, and clauses of boolean problem: i.e. (y1∨ y2∨ y3)∧

(y1 ∨ ¬y5) ∨ ...
Output: whether there exists y satisfying all clauses.
P is type of problems where we can solve the problem in polynomial time.
NP: Let L ⊂ {0, 1}∗ be a arbitrary length bit string. L is in NP (non-deterministic polynomial time

problem) if there exists polynomial time verifier M(x, y) ∈ {0, 1} such that:
1. ∀x ∈ L, there exists y polynomial size such that M(x, y) = 1
2. ∀x /∈ L and y polynomial size, M(x, y) = 0.
Note that P ̸= NP ⇔ 3SAT /∈ P .
#3-SAT problem: we explain it with a example:
Let Px(y) = 1

Zx
1{y satisfies x}, where x stands for the set of clauses of boolean problems as before and

y ∈ {0, 1}n .
#3-SAT problems: Given x the clauses of boolean problems, compute Zx is #3-SAT problems.
We can see that #3-SAT is at least as hard as 3-SAT problems. Since once we know if Zx we know

that if there exists y such that x is satisfied. i.e. Zx > 0 implies the existence of such y, but knowing the
result of 3-SAT problem is not enough to know the number of y such that x is satisfied.

#P problems: f(x) ∈ #P iff f(x) = #{y : M(x, y) = 1} can be computed in polynomial time.
FP problems is formally defined as follows:a binary relation P (x, y) is in FP if and only if there is a

deterministic polynomial time algorithm that, given x , either finds some y, such that P (x, y) holds, or
signals that no such y holds.

Remark: P ̸= NP → FP ̸= #P .
Consider the measure P (x) = 1

Z
exp(H(x)). It seems that counting Z is the same as sampling P .

But actually, for many sampling problems: computing Z is #P − hard, but sampling P is polynomial
time.

Example: No formula for Z, but sampling is possible.
Consider a graph G = (V,E) graph, β > 0, Pβ(x) =

1
Zβ
exp(β

∑
i∼j xixj) where x ∈ {1,−1}n.

There is a theorem by (Jerrom-Sindair/Swendsen-Wang) saying that we can sample this measure in
polynomial time. This is non-trivial, but easier if β < 1

maxideg(i)

Theorem 1. It is NP-hard to compute Zβ.

Proof. Define r = eβ. Then we have

Zβ =
∑
x

r
∑

i∼j xixj

Noticing that
∑

i∼j xixj ∈ [−#edges,#edges]. Then can write z as

Zβ =

a=|E|∑
a=−|E|

bar
a (1)

where ba is the number of x such that
∑

i∼j xixj = a. Then by (1), we write Zβ as a polynomial of
degree. Then by fundamental theorem of algebra, we can fix a polynomial by evaluating the polynomial
on finitely many points, which takes polynomial time.

On the other hand, we know the fact: the Max-cut problem : minx∈{1,−1}n
∑

i∼j xixj is NP-hard. The
by computing Zβ for at least n2 + 1 values of β, we can solve the Max-cut problem, which means that
NP=P. But NP=P is the statement that people believe is false.

2

We will end this proof by providing an argument on why we can fix a polynomial by evaluating it at
fintely many points.

Consider a polynomial of degree n:

P (x) = a0 + a1x+ ...+ anx
n

If we value P (x) at n+ 1 distinct points x0...xn and we denote yi = P (xi) for i = 0, 1, 2...n. Then we can
get:

y = XA

where y ∈ Rn+1 with entries are yi = P (xi). A ∈ Rn+1 with Ai = ai is the vector we want to solve.
X ∈ R(n+1)×(n+1) is the Vandermonde matrix with Vi,j = xj

i . We know that Vandermonde matrix is
invertible since

det(X) =
∏

0≤i<j≤n

(xi − xj)

and det(X) ̸= 0 since xi are distinct.

Remark 1. The #Max-cut problem is actually #P -hard, and therefore, by the same argument, we can
show that Zβ is #P -hard problem.

3

	Review of last time
	Introduction of complexity theory

