STAT 31512 Spring 2024 Scribe: Kexiang Wang
March 25, 2024 Lecturer: Frederic Koehler
These notes have not received the scrutiny of publication. They could be missing important references, etc.

Counting and Complexity Theory

1 Review of last time

Last time, we solved problem: for a given graph G = (V,), how to sample the spanning tree of this graph
uniformly.
To solve this problem, we showed the that:

7z = d@t(LNL,\,l)

where Z is the number of spanning trees of G and L = D — A is the graph Laplacian.
But we actually solved a more general problem, where we could put weights on each edges. Let A, € R
be the weight of each edge. The we can define the probability measure for S C F:

1
P)\(S) = Z_)\l{S is a spanning tree} ° H)\e
ecS
Here is a example of a given graph:
1
2
3 4

We know that there are 3 different spanning trees in this graph. We can delete edge2,4, edge2,3 and
edge 3,4 to get 3 different spanning trees. If we set A4 = 10", and Ao3 = Aoy = 1, we can find by the

definition:
P(edge 3,4 is deleted in the tree) ~ 107'%

and
1
P(edge 2,3 is deleted in the tree) = P(edge 2,4 is deleted in the tree) ~ 5~ 10719 ~

N | —

By similar argument, we can also show that
Z)\ = det(LNLNl)

This means that we can compute Z, exactly in polynomial time. However, if we consider the general
energy-based model for z € {—1,1}™

p(r) = Zerp(H(x))

Can we find a algorithm to compute Z in polynomial time? The answer is no. There are cases that we
can compute H(z) in polynomial time, but we cannot compute Z in polynomial time.

1

2 Introduction of complexity theory

Here, we introduce some basic concepts in complexity theory in compute science.

3-SAT: ”NP-complete” problem:

Input: Formula in variable (y1,ys, ..., yn) € {0, 1}", and clauses of boolean problem: i.e. (y1VysVys) A
(y1 \% —|y5) V...

Output: whether there exists y satisfying all clauses.

P is type of problems where we can solve the problem in polynomial time.

NP: Let L € {0,1}* be a arbitrary length bit string. L is in NP (non-deterministic polynomial time
problem) if there exists polynomial time verifier M (z,y) € {0, 1} such that:

1. Vx € L, there exists y polynomial size such that M(z,y) =1

2. Vx ¢ L and y polynomial size, M (x,y) = 0.

Note that P # NP < 3SAT ¢ P.

#3-SAT problem: we explain it with a example:

Let P,(y) = Z%l{y satisfies x}» Where x stands for the set of clauses of boolean problems as before and
y € {0,1}" .

#3-SAT problems: Given z the clauses of boolean problems, compute Z, is #3-SAT problems.

We can see that #3-SAT is at least as hard as 3-SAT problems. Since once we know if Z, we know
that if there exists y such that x is satisfied. i.e. Z, > 0 implies the existence of such y, but knowing the
result of 3-SAT problem is not enough to know the number of y such that x is satisfied.

#P problems: f(x) € #P iff f(x) = #{y: M(x,y) = 1} can be computed in polynomial time.

FP problems is formally defined as follows:a binary relation P(z,y) is in FP if and only if there is a
deterministic polynomial time algorithm that, given z , either finds some y, such that P(x,y) holds, or
signals that no such y holds.

Remark: P # NP — FP # #P.

Consider the measure P(z) = exp(H(x)). It seems that counting Z is the same as sampling P.

But actually, for many sampling problems: computing 7 is #P — hard, but sampling P is polynomial
time.

Example: No formula for Z, but sampling is possible.

Consider a graph G = (V, E) graph, 8 > 0, Ps(z) = Z%exp(ﬁ > inj Titj) where z € {1, —1}".

There is a theorem by (Jerrom-Sindair/Swendsen-Wang) saying that we can sample this measure in

polynomial time. This is non-trivial, but easier if g < m

Theorem 1. [t is NP-hard to compute Zg.

Proof. Define r = €. Then we have
ZED Dl

Noticing that . . x;x; € [—#edges, #edges|. Then can write z as

i~vg

a=|E|

Zy= Y bar" (1)

a=—|E)|

where b, is the number of x such that >, ;x;z; = a. Then by (1), we write Zs as a polynomial of
degree. Then by fundamental theorem of algebra, we can fix a polynomial by evaluating the polynomial
on finitely many points, which takes polynomial time.

On the other hand, we know the fact: the Max-cut problem : mingeq1,—1yn Ziwj x;x; is NP-hard. The
by computing Zg for at least ny 4+ 1 values of 3, we can solve the Max-cut problem, which means that
NP=P. But NP=P is the statement that people believe is false.

We will end this proof by providing an argument on why we can fix a polynomial by evaluating it at
fintely many points.
Consider a polynomial of degree n:

P(z) = ap+ a1z + ... + a,a”

If we value P(z) at n + 1 distinct points x...x,, and we denote y; = P(z;) for i = 0, 1,2...n. Then we can
get:

y=XA
where y € R™"! with entries are y; = P(z;). A € R"! with A; = a; is the vector we want to solve.
X € ROFUx(+D g the Vandermonde matrix with Vi; = 2. We know that Vandermonde matrix is
invertible since
det(X)=] (2:i—a;)
0<i<j<n
and det(X) # 0 since z; are distinct. O

Remark 1. The #Max-cut problem is actually #P-hard, and therefore, by the same argument, we can
show that Zg is #P-hard problem.

	Review of last time
	Introduction of complexity theory

