Counting and Complexity Theory

1 Review of last time

Last time, we solved problem: for a given graph $G=(V, E)$, how to sample the spanning tree of this graph uniformly.

To solve this problem, we showed the that:

$$
Z=\operatorname{det}\left(L_{\sim 1, \sim 1}\right)
$$

where Z is the number of spanning trees of G and $L=D-A$ is the graph Laplacian.
But we actually solved a more general problem, where we could put weights on each edges. Let $\lambda_{e} \in \mathbb{R}_{\geq 0}$ be the weight of each edge. The we can define the probability measure for $S \subset E$:

$$
\mathbb{P}_{\lambda}(S)=\frac{1}{Z_{\lambda}} 1_{\{\mathrm{S} \text { is a spanning tree }\}} \cdot \prod_{e \in S} \lambda_{e}
$$

Here is a example of a given graph:

We know that there are 3 different spanning trees in this graph. We can delete edge2,4, edge2,3 and edge 3,4 to get 3 different spanning trees. If we set $\lambda_{3,4}=10^{100}$, and $\lambda_{2,3}=\lambda_{2,4}=1$, we can find by the definition:

$$
\mathbb{P}(\text { edge } 3,4 \text { is deleted in the tree }) \sim 10^{-100}
$$

and

$$
\mathbb{P}(\text { edge } 2,3 \text { is deleted in the tree })=\mathbb{P}(\text { edge } 2,4 \text { is deleted in the tree }) \sim \frac{1}{2}-10^{-100} \sim \frac{1}{2}
$$

By similar argument, we can also show that

$$
Z_{\lambda}=\operatorname{det}\left(L_{\sim 1, \sim 1}\right)
$$

This means that we can compute Z_{λ} exactly in polynomial time. However, if we consider the general energy-based model for $x \in\{-1,1\}^{n}$:

$$
p(x)=\frac{1}{Z} \exp (H(x))
$$

Can we find a algorithm to compute Z in polynomial time? The answer is no. There are cases that we can compute $H(x)$ in polynomial time, but we cannot compute Z in polynomial time.

2 Introduction of complexity theory

Here, we introduce some basic concepts in complexity theory in compute science.
3-SAT: "NP-complete" problem:
Input: Formula in variable $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in\{0,1\}^{n}$, and clauses of boolean problem: i.e. $\left(y_{1} \vee y_{2} \vee y_{3}\right) \wedge$ $\left(y_{1} \vee \neg y_{5}\right) \vee \ldots$

Output: whether there exists y satisfying all clauses.
P is type of problems where we can solve the problem in polynomial time.
NP: Let $L \subset\{0,1\}^{*}$ be a arbitrary length bit string. L is in NP (non-deterministic polynomial time problem) if there exists polynomial time verifier $M(x, y) \in\{0,1\}$ such that:

1. $\forall x \in L$, there exists y polynomial size such that $M(x, y)=1$
2. $\forall x \notin L$ and y polynomial size, $M(x, y)=0$.

Note that $P \neq N P \Leftrightarrow 3 S A T \notin P$.
$\# 3$-SAT problem: we explain it with a example:
Let $P_{x}(y)=\frac{1}{Z_{x}} 1_{\{\mathrm{y} \text { satisfies } \mathrm{x}\}}$, where x stands for the set of clauses of boolean problems as before and $y \in\{0,1\}^{n}$.
\#3-SAT problems: Given x the clauses of boolean problems, compute Z_{x} is \#3-SAT problems.
We can see that $\# 3$-SAT is at least as hard as 3 -SAT problems. Since once we know if Z_{x} we know that if there exists y such that x is satisfied. i.e. $Z_{x}>0$ implies the existence of such y, but knowing the result of 3-SAT problem is not enough to know the number of y such that x is satisfied.
$\# P$ problems: $f(x) \in \# P$ iff $f(x)=\#\{y: M(x, y)=1\}$ can be computed in polynomial time.
FP problems is formally defined as follows:a binary relation $P(x, y)$ is in FP if and only if there is a deterministic polynomial time algorithm that, given x, either finds some y, such that $P(x, y)$ holds, or signals that no such y holds.

Remark: $P \neq N P \rightarrow F P \neq \# P$.
Consider the measure $P(x)=\frac{1}{Z} \exp (H(x))$. It seems that counting Z is the same as sampling P.
But actually, for many sampling problems: computing Z is $\# P$ - hard, but sampling P is polynomial time.

Example: No formula for Z, but sampling is possible.
Consider a graph $G=(V, E)$ graph, $\beta>0, P_{\beta}(x)=\frac{1}{Z_{\beta}} \exp \left(\beta \sum_{i \sim j} x_{i} x_{j}\right)$ where $x \in\{1,-1\}^{n}$.
There is a theorem by (Jerrom-Sindair/Swendsen-Wang) saying that we can sample this measure in polynomial time. This is non-trivial, but easier if $\beta<\frac{1}{\max _{i} \operatorname{deg}(i)}$
Theorem 1. It is NP-hard to compute Z_{β}.
Proof. Define $r=e^{\beta}$. Then we have

$$
Z_{\beta}=\sum_{x} r^{\sum_{i \sim j} x_{i} x_{j}}
$$

Noticing that $\sum_{i \sim j} x_{i} x_{j} \in[-\# e d g e s, \# e d g e s]$. Then can write z as

$$
\begin{equation*}
Z_{\beta}=\sum_{a=-|E|}^{a=|E|} b_{a} r^{a} \tag{1}
\end{equation*}
$$

where b_{a} is the number of x such that $\sum_{i \sim j} x_{i} x_{j}=a$. Then by (1), we write Z_{β} as a polynomial of degree. Then by fundamental theorem of algebra, we can fix a polynomial by evaluating the polynomial on finitely many points, which takes polynomial time.

On the other hand, we know the fact: the Max-cut problem : $\min _{x \in\{1,-1\}^{n}} \sum_{i \sim j} x_{i} x_{j}$ is NP-hard. The by computing Z_{β} for at least $n_{2}+1$ values of β, we can solve the Max-cut problem, which means that $\mathrm{NP}=\mathrm{P}$. But $\mathrm{NP}=\mathrm{P}$ is the statement that people believe is false.

We will end this proof by providing an argument on why we can fix a polynomial by evaluating it at fintely many points.

Consider a polynomial of degree n :

$$
P(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

If we value $P(x)$ at $n+1$ distinct points $x_{0} \ldots x_{n}$ and we denote $y_{i}=P\left(x_{i}\right)$ for $i=0,1,2 \ldots n$. Then we can get:

$$
y=X A
$$

where $y \in \mathbb{R}^{n+1}$ with entries are $y_{i}=P\left(x_{i}\right) . A \in \mathbb{R}^{n+1}$ with $A_{i}=a_{i}$ is the vector we want to solve. $X \in \mathbb{R}^{(n+1) \times(n+1)}$ is the Vandermonde matrix with $V_{i, j}=x_{i}^{j}$. We know that Vandermonde matrix is invertible since

$$
\operatorname{det}(X)=\prod_{0 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

and $\operatorname{det}(X) \neq 0$ since x_{i} are distinct.
Remark 1. The \#Max-cut problem is actually \#P-hard, and therefore, by the same argument, we can show that Z_{β} is $\# P$-hard problem.

