Lecture 4 - Intro to Markov Chain

1 Intro to Markov Chain

What is Markov Chain?
Definition 1 (Markov Chain). A discrete-time Markov chain is a sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$, that satisfies for any $t, \operatorname{Pr}\left[X_{t+1}=\cdot \mid X_{1}, \ldots, X_{t}\right]=\operatorname{Pr}\left[X_{t+1}=\cdot \mid X_{t}\right]$.

A related but different object is martingale:
Definition 2 (Martingale). A discrete-time martingale is a discrete-time stochastic process $X_{1}, X_{2}, X_{3} \ldots$, that satisfies for any $t, \mathbb{E}\left[\left|X_{t}\right|\right] \leq \infty$ and $\mathbb{E}\left[X_{t+1} \mid X_{1}, \ldots, X_{t}\right]=X_{t}$.

Definition 3 (Time-Homogeneous Markov Chain). The probability of the transition is independent of t, $\operatorname{Pr}\left[X_{t+1}=x \mid X_{t}=y\right]=\operatorname{Pr}\left[X_{t}=x \mid X_{t-1}=y\right]$ for all t.

Suppose $X_{1}, X_{2}, \ldots, X_{T} \in \Omega$ where Ω is a finite set and $|\Omega|=S$. Let $P \in \mathbb{R}^{S \times S}$ be the transition matrix

$$
P_{i j}=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right], \quad 1 \leq i, j \leq S
$$

Properties of P (row stochastic matrix):
(1) For any $i, j, P_{i j} \geq 0$.
(2) For any $i, \sum_{j} P_{i j}=1$.

Example 1. Consider the transition matrix

$$
P=\left[\begin{array}{lll}
0 & 0.5 & 0.5 \\
0 & 0.6 & 0.4 \\
0 & 0.4 & 0.6
\end{array}\right]
$$

The Markov Chain is

Figure 1: Markov Chain

Remark 1. S is usually very big, e.g. Ising model, $\Omega=\{ \pm 1\}^{n},|\Omega|=S=2^{n}$.
Fact 1. For any $i,(P \mathbf{1})_{i}=\sum_{j} P_{i j}=1$, so $P \mathbf{1}=1$. $\operatorname{spec}\left(P^{\top}\right)=\operatorname{spec}(P)$, so there exists $\pi \in \mathbb{C}^{S}$ such that $\pi P=\pi$.

Fact 2. All eigenvalues $\lambda \in \operatorname{spec}(P)$ satisfy $|\lambda| \leq 1$.
Proof. Gershgorin disk theorem says that every eigenvalue of $M \in \mathbb{C}^{n \times n}$ lies in

$$
\bigcup_{i=1}^{n}\left\{z:\left|z-\left|M_{i i}\right|\right| \leq \sum_{j \neq i}\left|M_{i j}\right|\right\}
$$

This implies for all $\lambda \in \operatorname{spec}(P),|\lambda| \leq \sum_{j} P_{i j}=1$.
Definition 4. P is irreducible and aperiodic if there exists $t \geq 1$ such that P^{t} has all positive entries.
Theorem 1 (Perron-Frobenius theorem, Fundamental theorem of Markov Chains). If P is irreducible and aperiodic, then there exists π such that
(1) $\pi P=\pi$.
(2) $\pi_{i}>0$ for all $1 \leq i \leq S$.
(3) $\left|\lambda_{i}\right|<1$ for all $i \neq 1$.

We first do some preparations before proving Theorem 1.
Fact 3. $\operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right)=\left(P^{t}\right)_{i j}$.
Lemma 1. Suppose $u, v \in \mathbb{R}_{\geq 0}^{S}$ are nonnegative vectors and $\sum_{i} u_{i}=\sum_{i} v_{i}=1$. Then
(1) $u^{\top} P, v^{\top} P$ are also probability distributions.
(2) (strong data processing inequality) $\left|(u-v)^{\top} P\right|_{1} \leq\left(1-2 \min _{i, j} P_{i j}\right)|u-v|_{1}$.

Proof of Lemma 11. (1) $\sum_{j}\left(u^{\top} P\right)_{j}=\sum_{j} \sum_{i} u_{i} P_{i j}=\sum_{i} u_{i}=1 ; \sum_{j}\left(v^{\top} P\right)_{j}=\sum_{j} \sum_{i} v_{i} P_{i j}=\sum_{i} v_{i}=1$.
(2) Notice that

$$
\left|(u-v)^{\top} P\right|_{1}=\sum_{j}\left|\sum_{i}\left(u_{i}-v_{i}\right) P_{i j}\right|=\sup _{\sigma \in\{ \pm 1\}^{n}}(u-v)^{\top} P \sigma
$$

If $\sigma=\mathbf{1}$ or $\mathbf{- 1}$, then $(u-v)^{\top} P \sigma=0$ following from (1); if σ has at least one positive entry and one negative entry, then for all i,

$$
(P \sigma)_{i}=\sum_{j} P_{i j} \sigma_{j} \in\left[-1+2 \min _{i j} P_{i j}, 1-2 \min _{i j} P_{i j}\right]
$$

thus

$$
(u-v)^{\top} P \sigma \leq|u-v|_{1}|P \sigma|_{\infty} \leq\left(1-2 \min _{i, j} P_{i j}\right)|u-v|_{1}
$$

Therefore, $\left|(u-v)^{\top} P\right|_{1} \leq\left(1-2 \min _{i, j} P_{i j}\right)|u-v|_{1}$.
Now we give the proof of Theorem 1 .
Proof of Theorem 1. Without loss of generality, we assume $P_{i j}>0$ for all i, j. Recall that
Theorem 2 (Banach fixed point theorem). Let (\mathcal{X}, d) be a non-empty complete metric space, and $f: \mathcal{X} \rightarrow$ \mathcal{X} satisfies

$$
d(f(x), f(y))<(1-\varepsilon) d(x, y), \quad \forall x, y \in \mathcal{X}
$$

for some $\varepsilon>0$. Then there is a unique x^{*} such that $f\left(x^{*}\right)=x^{*}$, and

$$
\lim _{t \rightarrow \infty} \underbrace{(f \circ \cdots \circ f)}_{t \text { times }}(x)=x^{*}, \quad \forall x \in \mathcal{X}
$$

Consider $\mathcal{X}=\left\{u \in \mathbb{R}^{S}: u \geq 0, \sum_{i} u_{i}=1\right\}$ and $d(u, v)=|u-v|_{1}$. By Lemma $1, P^{\top}: \mathcal{X} \rightarrow \mathcal{X}$ is a contraction mapping, applying Banach fixed point theorem gives that there exists $\pi^{*} \in \mathcal{X}$ such that $P^{\top} \pi^{*}=\pi^{*}$, and for any $u \in \mathcal{X}, \lim _{t \rightarrow \infty}\left(P^{\top}\right)^{t} u=\pi^{*}$. For every $i,\left(\pi^{*}\right)_{i}=\left(P^{\top} \pi^{*}\right)_{i}=\sum_{j} P_{i j}^{\top} \pi_{j}^{*}>0$ since $P_{i j}^{\top}>0$ and $\sum_{j} \pi_{j}^{*}=1$. This proves (1) and (2) in Theorem 1 .

For the third part (3), we shall prove all other eigenvalues λ_{i} satisfy $\left|\lambda_{i}\right|<1$. Let f be the right eigenvector of P corresponding to eigenvalue $\lambda, P f=\lambda f$, thus $P^{t} f=\lambda^{t} f$ for $t \geq 1$. For any j, it holds that

$$
\begin{equation*}
f^{\top} \pi^{*}=\lim _{t \rightarrow \infty} f^{\top}\left(P^{\top}\right)^{t} e_{j}=\lim _{t \rightarrow \infty} e_{j}^{\top} P^{t} f=\lim _{t \rightarrow \infty} \lambda^{t} e_{j}^{\top} f=\lim _{t \rightarrow \infty} \lambda^{t} f_{j} \tag{1}
\end{equation*}
$$

If $|\lambda|>1$ or $|\lambda|=1$ but $\lambda \neq 1, \lim _{t \rightarrow \infty} \lambda^{t}$ does not exist, which is a contradiction. Therefore, $\lambda=1$ or $|\lambda|<1$. It remains to show 1 is the only right eigenvector of P corresponding to eigenvalue 1 . Suppose $P f=f$, then (1) gives that

$$
f^{\top} \pi^{*}=f_{j}, \quad 1 \leq j \leq S
$$

which implies $f_{1}=f_{2}=\cdots=f_{S}$ and so f is a multiple of 1 . This completes the proof.

