STAT 31512 Spring 2024 Scribe: Jiaheng Chen March 27, 2024 Lecturer: Frederic Koehler These notes have not received the scrutiny of publication. They could be missing important references, etc.

Lecture 4 – Intro to Markov Chain

1 Intro to Markov Chain

What is Markov Chain?

Definition 1 (Markov Chain). A discrete-time *Markov chain* is a sequence of random variables X_1, X_2, X_3, \ldots , that satisfies for any t, $\Pr[X_{t+1} = \cdot | X_1, \ldots, X_t] = \Pr[X_{t+1} = \cdot | X_t]$.

A related but different object is *martingale*:

Definition 2 (Martingale). A discrete-time martingale is a discrete-time stochastic process $X_1, X_2, X_3...$, that satisfies for any t, $\mathbb{E}[|X_t|] \leq \infty$ and $\mathbb{E}[X_{t+1}|X_1, \ldots, X_t] = X_t$.

Definition 3 (Time-Homogeneous Markov Chain). The probability of the transition is independent of t, $\Pr[X_{t+1} = x \mid X_t = y] = \Pr[X_t = x \mid X_{t-1} = y]$ for all t.

Suppose $X_1, X_2, \ldots, X_T \in \Omega$ where Ω is a finite set and $|\Omega| = S$. Let $P \in \mathbb{R}^{S \times S}$ be the transition matrix

$$P_{ij} = \Pr[X_{t+1} = j | X_t = i], \quad 1 \le i, j \le S.$$

Properties of P (row stochastic matrix):

- (1) For any $i, j, P_{ij} \ge 0$.
- (2) For any $i, \sum_{j} P_{ij} = 1$.

Example 1. Consider the transition matrix

$$P = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0.6 & 0.4 \\ 0 & 0.4 & 0.6 \end{bmatrix}.$$

The Markov Chain is

Figure 1: Markov Chain

Remark 1. S is usually very big, e.g. Ising model, $\Omega = \{\pm 1\}^n, |\Omega| = S = 2^n$.

Fact 1. For any i, $(P1)_i = \sum_j P_{ij} = 1$, so P1 = 1. spec $(P^{\top}) = \text{spec}(P)$, so there exists $\pi \in \mathbb{C}^S$ such that $\pi P = \pi$.

Fact 2. All eigenvalues $\lambda \in \operatorname{spec}(P)$ satisfy $|\lambda| \leq 1$.

Proof. Gershgorin disk theorem says that every eigenvalue of $M \in \mathbb{C}^{n \times n}$ lies in

$$\bigcup_{i=1}^{n} \left\{ z : |z - |M_{ii}|| \le \sum_{j \ne i} |M_{ij}| \right\}.$$

This implies for all $\lambda \in \operatorname{spec}(P)$, $|\lambda| \leq \sum_j P_{ij} = 1$.

Definition 4. P is *irreducible* and *aperiodic* if there exists $t \ge 1$ such that P^t has all positive entries.

Theorem 1 (Perron-Frobenius theorem, Fundamental theorem of Markov Chains). If P is irreducible and aperiodic, then there exists π such that

- (1) $\pi P = \pi$.
- (2) $\pi_i > 0$ for all $1 \le i \le S$.
- (3) $|\lambda_i| < 1$ for all $i \neq 1$.

We first do some preparations before proving Theorem 1.

Fact 3.
$$\Pr(X_t = j | X_0 = i) = (P^t)_{ij}$$
.

Lemma 1. Suppose $u, v \in \mathbb{R}^{S}_{\geq 0}$ are nonnegative vectors and $\sum_{i} u_{i} = \sum_{i} v_{i} = 1$. Then

- (1) $u^{\top}P, v^{\top}P$ are also probability distributions.
- (2) (strong data processing inequality) $|(u-v)^{\top}P|_1 \leq (1-2\min_{i,j}P_{ij})|u-v|_1$.

Proof of Lemma 1. (1) $\sum_{j} (u^{\top} P)_{j} = \sum_{j} \sum_{i} u_{i} P_{ij} = \sum_{i} u_{i} = 1; \sum_{j} (v^{\top} P)_{j} = \sum_{j} \sum_{i} v_{i} P_{ij} = \sum_{i} v_{i} = 1.$ (2) Notice that

$$|(u-v)^{\top}P|_{1} = \sum_{j} |\sum_{i} (u_{i}-v_{i})P_{ij}| = \sup_{\sigma \in \{\pm 1\}^{n}} (u-v)^{\top}P\sigma.$$

If $\sigma = \mathbf{1}$ or $-\mathbf{1}$, then $(u - v)^{\top} P \sigma = 0$ following from (1); if σ has at least one positive entry and one negative entry, then for all i,

$$(P\sigma)_i = \sum_j P_{ij}\sigma_j \in [-1 + 2\min_{ij} P_{ij}, 1 - 2\min_{ij} P_{ij}],$$

thus

$$(u-v)^{\top} P\sigma \le |u-v|_1 |P\sigma|_{\infty} \le (1-2\min_{i,j} P_{ij})|u-v|_1$$

Therefore, $|(u-v)^{\top}P|_1 \le (1-2\min_{i,j}P_{ij})|u-v|_1$.

Now we give the proof of Theorem 1.

Proof of Theorem 1. Without loss of generality, we assume $P_{ij} > 0$ for all i, j. Recall that

Theorem 2 (Banach fixed point theorem). Let (\mathcal{X}, d) be a non-empty complete metric space, and $f : \mathcal{X} \to \mathcal{X}$ satisfies

$$d(f(x), f(y)) < (1 - \varepsilon)d(x, y), \quad \forall x, y \in \mathcal{X}$$

for some $\varepsilon > 0$. Then there is a unique x^* such that $f(x^*) = x^*$, and

$$\lim_{t \to \infty} \underbrace{(f \circ \cdots \circ f)}_{t \text{ times}} (x) = x^*, \quad \forall x \in \mathcal{X}.$$

Consider $\mathcal{X} = \{u \in \mathbb{R}^S : u \ge 0, \sum_i u_i = 1\}$ and $d(u, v) = |u - v|_1$. By Lemma 1, $P^\top : \mathcal{X} \to \mathcal{X}$ is a contraction mapping, applying Banach fixed point theorem gives that there exists $\pi^* \in \mathcal{X}$ such that $P^\top \pi^* = \pi^*$, and for any $u \in \mathcal{X}$, $\lim_{t\to\infty} (P^\top)^t u = \pi^*$. For every i, $(\pi^*)_i = (P^\top \pi^*)_i = \sum_j P_{ij}^\top \pi_j^* > 0$ since $P_{ij}^\top > 0$ and $\sum_j \pi_j^* = 1$. This proves (1) and (2) in Theorem 1.

For the third part (3), we shall prove all other eigenvalues λ_i satisfy $|\lambda_i| < 1$. Let f be the right eigenvector of P corresponding to eigenvalue λ , $Pf = \lambda f$, thus $P^t f = \lambda^t f$ for $t \ge 1$. For any j, it holds that

$$f^{\top}\pi^* = \lim_{t \to \infty} f^{\top}(P^{\top})^t e_j = \lim_{t \to \infty} e_j^{\top} P^t f = \lim_{t \to \infty} \lambda^t e_j^{\top} f = \lim_{t \to \infty} \lambda^t f_j.$$
(1)

If $|\lambda| > 1$ or $|\lambda| = 1$ but $\lambda \neq 1$, $\lim_{t\to\infty} \lambda^t$ does not exist, which is a contradiction. Therefore, $\lambda = 1$ or $|\lambda| < 1$. It remains to show **1** is the only right eigenvector of *P* corresponding to eigenvalue 1. Suppose Pf = f, then (1) gives that

$$f^{\top}\pi^* = f_j, \quad 1 \le j \le S,$$

which implies $f_1 = f_2 = \cdots = f_S$ and so f is a multiple of **1**. This completes the proof.