Spectral theory of reversible Markov chains

1 Part 1: Reversibility

Definition 1. A Markov chain P is reversible with respect to π if and only if ΠP is symmetric, where $\Pi = \text{diag}(\pi_1, \ldots, \pi_s)$.

Remark 1. Reversibility is equivalent to $\pi_i P_{ij} = \pi_j P_{ji}$ for all i, j. Additionally, it implies that $\Pi^{1/2} P \Pi^{-1/2}$ is symmetric, indicating that P is diagonalizable.

Fact 1. If P is symmetric, then π is uniform, specifically $\pi = \frac{1}{s}$, and consequently, ΠP is symmetric.

Proof. Since $P^T \mathbb{1} = P \mathbb{1} = \mathbb{1}$, and by the fundamental theorem of algebra, $\mathbb{1}$ is the unique right eigenvector of P corresponding to the eigenvalue 1, it follows that π is proportional to $\mathbb{1}$.

Example 1. Random walk on a *d*-regular graph:

$$\begin{vmatrix} 1 & - & - & 3 \\ | & - & - & - \\ 2 & & & \\ 2 & & & \\ \end{vmatrix} A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{vmatrix} P = \frac{1}{d}A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \\ \pi = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Example 2. Periodic Graph

$$\begin{vmatrix} 1 & 3 \\ 0 & 1 & 0 \\ 2 & 2 & 0 & 0 \end{vmatrix} A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} P = \frac{1}{\deg}A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} \pi = \begin{pmatrix} \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \end{pmatrix}$$

where $\deg = \operatorname{diag}(\deg_1, \deg_2, \deg_3) = \operatorname{diag}(1, 2, 1)$.

Fact 2. Reversibility: Suppose $X_0 \sim \pi$, then the Markov chain $\cdots \rightarrow X_{-2} \rightarrow X_{-1} \rightarrow X_0 \rightarrow X_1 \cdots$ can be reversed, i.e., the law of $\{X_t\}_{t\geq 0}$ is the same as the law of $\{X_{-t}\}_{t\geq 0}$.

Proof. Consider transitions between states in a reversible Markov chain:

$$X_0 \to X_1 \stackrel{d}{=} X_0 \leftarrow X_1,$$

$$\Pr(X_0 = j | X_1 = i) = \frac{\Pr(X_0 = j) \Pr(X_1 = i | X_0 = j)}{\Pr(X_1 = i)}$$

$$= \frac{\pi_j P_{ji}}{\pi_i}$$

$$= P_{ji},$$

which confirms the reversibility as the forward and reverse transitions obey the same probability law. \Box Example 3. Non-reversible Case:

In the forward direction, the walk proceeds as $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \cdots$, while in the reverse direction, it goes $1 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 3 \cdots$

2 Part 2: Spectral Theorem

Theorem 1 (Concrete Version). For any symmetric matrix $M \in \mathbb{R}^{n \times n}$, it can be represented as $M = U\Lambda U^T = \sum_i \lambda_i q_i q_i^T$, where $q_i^T q_j = \delta_{ij}$, and each λ_i is a real number.

Theorem 2 (Abstract Version). Let $\langle \cdot, \cdot \rangle_{\pi}$ be an inner product on \mathbb{R}^n . If P is self-adjoint with respect to $\langle \cdot, \cdot \rangle_{\pi}$, meaning $\langle \alpha, P\beta \rangle_{\pi} = \langle P\alpha, \beta \rangle_{\pi}$ for all α, β , then P can be diagonalized as $Pf = \sum_i \lambda_i \langle f_i, f \rangle_{\pi} f_i$, where $\langle f_i, f_j \rangle_{\pi} = \delta_{ij}$, the f_i are real orthonormal eigenvectors, and λ_i are the corresponding real eigenvalues. In matrix form, $P = F\Lambda F^{-1}$, where F is the matrix with columns f_1, \ldots, f_n .

Definition 2. The inner product $\langle f, g \rangle_{\pi}$ for vectors f and g with respect to the stationary distribution π is defined as $\langle f, g \rangle_{\pi} = f^T \Pi g$, where Π is a diagonal matrix with entries of π . This is equal to $\sum_i f(i)g(i)\pi_i = \mathbb{E}_{X \sim \pi}[f(X)g(X)]$.

Fact 3. If P is reversible w.r.t π , then it is also self-adjoint with respect to $\langle \cdot, \cdot \rangle_{\pi}$.

Proof. The inner product of f and Pg under π is given by:

$$\begin{split} \langle f, Pg \rangle_{\pi} &= \langle f, \Pi Pg \rangle \\ &= \langle f, (\Pi P)^{T}g \rangle \\ &= \langle f, P^{T}\Pi g \rangle \quad (\text{since } P^{T} \text{ is the adjoint of } P \text{ with respect to } \langle \cdot, \cdot \rangle) \\ &= \langle Pf, \Pi g \rangle \\ &= \langle Pf, g \rangle_{\pi}. \end{split}$$

This equality demonstrates that P maintains self-adjointness under the given inner product.

Remark 2. The Spectral Theorem ensures that a matrix P can be expressed as $P = \sum_i \lambda_i f_i f_i^T \Pi = F \Lambda F^T \Pi = F \Lambda F^{-1}$, since $F^T \Pi F = I_s$, where I_s is the identity matrix of size s, so $F^{-1} = F^T \Pi$.

 \square

3 Part 3: Poincaré Inequality

Variational Characterization of Eigenvectors

For a matrix P:

$$\lambda_2(P) = \sup\left\{\frac{\langle f, Pf \rangle_\pi}{\langle f, f \rangle_\pi} : \langle f, 1 \rangle_\pi = 0\right\}$$

This implies:

$$\lambda_2(P) \ge \frac{\langle f, Pf \rangle_{\pi}}{\langle f, f \rangle_{\pi}}, \quad \text{for all } f \text{ such that } \langle f, 1 \rangle_{\pi} = 0.$$

It follows that:

$$\lambda_2(P)\langle f, f \rangle_{\pi} \ge \langle f, Pf \rangle_{\pi},$$

$$-\lambda_2(P)\langle f, f \rangle_{\pi} \le -\langle f, Pf \rangle_{\pi},$$

(I - \lambda_2(P))\lambda f, f \rangle_{\pi} \le \lambda f, (I - P)f \rangle_{\pi}, for all f such that \lambda f, 1 \rangle_{\pi} = 0

Define the centered function:

$$\hat{f} = f - \mathbb{E}_{\pi}[f] \cdot \mathbb{1}, \text{ since } \langle \hat{f}, 1 \rangle_{\pi} = 0.$$

This leads to the inequality:

$$(1 - \lambda_2(P))\langle \hat{f}, \hat{f} \rangle_{\pi} \le \langle \hat{f}, (I - P) \hat{f} \rangle_{\pi},$$
$$(1 - \lambda_2(P))\langle \hat{f}, \hat{f} \rangle_{\pi} \le \langle f, (I - P) f \rangle_{\pi},$$

justified by $(I - P)\mathbb{1}_s = 0$ and the fact that I - P is self-adjoint with respect to $\langle \cdot, \cdot \rangle_{\pi}$. Moreover, we find that:

$$\langle \hat{f}, \hat{f} \rangle_{\pi} = \mathbb{E}_{\pi}[(f - \mathbb{E}_{\pi}[f])^2] = \operatorname{Var}_{\pi}(f - \mathbb{E}_{\pi}[f]).$$

Definition 3. The Laplacian of P is defined as L = I - P.

Remark 3. • *L* is self-adjoint with respect to $\langle \cdot, \cdot \rangle_{\pi}$.

- L is positive semi-definite, and L1 = 0.
- For a *d*-regular graph, $L = \frac{1}{d}(dI A) = \frac{1}{d}\hat{L}$, where \hat{L} is the standard Laplacian of the graph.

Theorem 3 (Poincaré Inequality). From the calculations above, we establish the Poincaré Inequality:

$$\operatorname{Var}_{\pi}[f - \mathbb{E}_{\pi}[f]] \le \frac{1}{1 - \lambda_2(P)} \langle f, Lf \rangle_{\pi}, \quad \forall f.$$

Here, $E_P(f, f)$ denotes the Dirichlet form.

Remark 4. • If the magnitude of ∇f is small, then the variance $\operatorname{Var}_{\pi}(f)$ is also small.

• The second eigenvalue λ_2 can be characterized as:

$$1 - \lambda_2 = \inf \left\{ \frac{\langle f, Lf \rangle_{\pi}}{\operatorname{Var}_{\pi}(f - \mathbb{E}_{\pi}[f])} : f \neq 0 \right\},$$
$$\lambda_2 = 1 - \inf \left\{ \frac{\langle f, Lf \rangle_{\pi}}{\operatorname{Var}_{\pi}(f - \mathbb{E}_{\pi}[f])} : f \neq 0 \right\}$$
$$= \sup \left\{ 1 - \frac{\langle f, Lf \rangle_{\pi}}{\operatorname{Var}_{\pi}(f)} : f \neq 0 \right\}.$$

For any function f, this provides a lower bound on λ_2 .

• Moreover, for any value λ such that the inequality

$$\lambda \ge 1 - \frac{\langle f, Lf \rangle_{\pi}}{\operatorname{Var}_{\pi}(f)}$$

holds for all non-zero f, we have an upper bound on λ_2 , specifically $\lambda_2 \leq \lambda$.