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Spectral theory of reversible Markov chains

1 Part 1: Reversibility

Definition 1. A Markov chain P is reversible with respect to 7 if and only if IIP is symmetric, where
II = diag(my, ..., ms).

Remark 1. Reversibility is equivalent to m; F;; = m; P;; for all ¢, j. Additionally, it implies that Y2 pI1-1/2
is symmetric, indicating that P is diagonalizable.

Fact 1. If P is symmetric, then w is uniform, specifically m = %, and consequently, I1P is symmetric.

Proof. Since PT1 = P1 = 1, and by the fundamental theorem of algebra, 1 is the unique right eigenvector
of P corresponding to the eigenvalue 1, it follows that 7 is proportional to 1. O

Example 1. Random walk on a d-regular graph:
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where deg = diag(deg,, deg,, deg;) = diag(1,2,1).

Fact 2. Reversibility: Suppose Xy ~ m, then the Markov chain -+ — X o = X 1 — Xg — X1+ can
be reversed, i.e., the law of {X;}i>o is the same as the law of {X_;}i>o0.

Proof. Consider transitions between states in a reversible Markov chain:

X() — X1 g X() — Xl,
PI'(XO = j) PI‘(Xl = Z|X0 = j)
PI'(XI = 'l)

Pr(Xy = j|1X; = i) =
;i Bji

Uy

- -F)ji7
which confirms the reversibility as the forward and reverse transitions obey the same probability law. [J

Example 3. Non-reversible Case:



In the forward direction, the walk proceeds as 1 —+ 2 — 3 — 1 — 2---, while in the reverse direction, it
goesl -3 —=2—=-1—=3---

2 Part 2: Spectral Theorem

Theorem 1 (Concrete Version). For any symmetric matriz M € R™ ", it can be represented as M =
UAUT =3, \iqiql, where ¢ q; = 6;5, and each \; is a real number.

Theorem 2 (Abstract Version). Let (-,-) be an inner product on R™. If P is self-adjoint with respect to
(-, )x, meaning (o, PB) = (Pa, B), for all o, B, then P can be diagonalized as Pf =" Ni(fi, f)=fi, where
(fis fi)r = 65, the fi are real orthonormal eigenvectors, and X\; are the corresponding real eigenvalues. In
matriz form, P = FAF~', where F is the matriz with columns fi,. .., fa.

Definition 2. The inner product (f, g). for vectors f and g with respect to the stationary distribution 7 is
defined as (f, g)» = f*1lg, where II is a diagonal matrix with entries of 7. This is equal to >_. f(1)g(i)m; =

Ex~r[f(X)g(X)].
Fact 3. If P is reversible w.r.t 7, then it is also self-adjoint with respect to (-, ).

Proof. The inner product of f and Pg under 7 is given by:
{
{
= (f, PTIlg) (since P’ is the adjoint of P with respect to (-,-))
{
{

This equality demonstrates that P maintains self-adjointness under the given inner product. O]

Remark 2. The Spectral Theorem ensures that a matrix P can be expressed as P = >, N\ fifI1l =
FAFTII = FAF~!, since FTIIF = I,, where I, is the identity matrix of size s, so F'~! = FTTI.

3 Part 3: Poincaré Inequality

Variational Characterization of Eigenvectors

For a matrix P:

<fan>7T:

Yo(P) = sup {W

(f,1>7r:0}.

This implies:

Xo(P) > %, for all f such that (f, 1), = 0.
It follows that:

)\Q(P)<f7f>ﬂ2 <f7Pf>7T7

2



_)\Q(P)<f7 f>7r S _<f7 Pf>7ra
(I = Xa(P))(f, f)a <(f,(I = P)f)r, forall fsuchthat (f, 1), =0.
Define the centered function:

~

f=f—E.f]-1, since (f 1), =0.

This leads to the inequality:
(1= Xa(P){f, ) < (f.(I = P)f)x,

(1= 22(P)(f, F)n < (fs (I = P)f)ny

justified by (I — P)1, = 0 and the fact that I — P is self-adjoint with respect to (-, ).
Moreover, we find that:

(f, F)r = Exl(f = Ea[f))*) = Vara(f — Ex[f]).
Definition 3. The Laplacian of P is defined as L = I — P.
Remark 3. e L is self-adjoint with respect to (-, ).
e [ is positive semi-definite, and L1 = 0.
e For a d-regular graph, L = é(dl —A) = éf/, where L is the standard Laplacian of the graph.

Theorem 3 (Poincaré Inequality). From the calculations above, we establish the Poincaré Inequality:

1
Varg[f — E-[f]] < m(ﬁ Lf)x, Vf.

Here, Ep(f, f) denotes the Dirichlet form.
Remark 4. e If the magnitude of V f is small, then the variance Var,(f) is also small.

e The second eigenvalue A\, can be characterized as:

1 — )\, = inf {Varf{}L_fg[f]) 7 0} 7
=t )

For any function f, this provides a lower bound on \,.

e Moreover, for any value A such that the inequality

oy L)

= Varg(f)

holds for all non-zero f, we have an upper bound on \,, specifically Ay < A.
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