Spectral theory of reversible Markov chains

1 Part 1: Reversibility

Definition 1. A Markov chain P is reversible with respect to π if and only if ΠP is symmetric, where $\Pi=\operatorname{diag}\left(\pi_{1}, \ldots, \pi_{s}\right)$.

Remark 1. Reversibility is equivalent to $\pi_{i} P_{i j}=\pi_{j} P_{j i}$ for all i, j. Additionally, it implies that $\Pi^{1 / 2} P \Pi^{-1 / 2}$ is symmetric, indicating that P is diagonalizable.

Fact 1. If P is symmetric, then π is uniform, specifically $\pi=\frac{1}{s}$, and consequently, ΠP is symmetric.
Proof. Since $P^{T} \mathbb{1}=P \mathbb{1}=\mathbb{1}$, and by the fundamental theorem of algebra, $\mathbb{1}$ is the unique right eigenvector of P corresponding to the eigenvalue 1 , it follows that π is proportional to $\mathbb{1}$.

Example 1. Random walk on a d-regular graph:

Example 2. Periodic Graph

Fact 2. Reversibility: Suppose $X_{0} \sim \pi$, then the Markov chain $\cdots \rightarrow X_{-2} \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \cdots$ can be reversed, i.e., the law of $\left\{X_{t}\right\}_{t \geq 0}$ is the same as the law of $\left\{X_{-t}\right\}_{t \geq 0}$.

Proof. Consider transitions between states in a reversible Markov chain:

$$
\begin{aligned}
X_{0} & \rightarrow X_{1} \quad \stackrel{d}{=} \quad X_{0} \leftarrow X_{1}, \\
\operatorname{Pr}\left(X_{0}=j \mid X_{1}=i\right) & =\frac{\operatorname{Pr}\left(X_{0}=j\right) \operatorname{Pr}\left(X_{1}=i \mid X_{0}=j\right)}{\operatorname{Pr}\left(X_{1}=i\right)} \\
& =\frac{\pi_{j} P_{j i}}{\pi_{i}} \\
& =P_{j i},
\end{aligned}
$$

which confirms the reversibility as the forward and reverse transitions obey the same probability law.

Example 3. Non-reversible Case:

In the forward direction, the walk proceeds as $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \cdots$, while in the reverse direction, it goes $1 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 3 \cdots$

2 Part 2: Spectral Theorem

Theorem 1 (Concrete Version). For any symmetric matrix $M \in \mathbb{R}^{n \times n}$, it can be represented as $M=$ $U \Lambda U^{T}=\sum_{i} \lambda_{i} q_{i} q_{i}^{T}$, where $q_{i}^{T} q_{j}=\delta_{i j}$, and each λ_{i} is a real number.

Theorem 2 (Abstract Version). Let $\langle\cdot, \cdot\rangle_{\pi}$ be an inner product on \mathbb{R}^{n}. If P is self-adjoint with respect to $\langle\cdot, \cdot\rangle_{\pi}$, meaning $\langle\alpha, P \beta\rangle_{\pi}=\langle P \alpha, \beta\rangle_{\pi}$ for all α, β, then P can be diagonalized as $P f=\sum_{i} \lambda_{i}\left\langle f_{i}, f\right\rangle_{\pi} f_{i}$, where $\left\langle f_{i}, f_{j}\right\rangle_{\pi}=\delta_{i j}$, the f_{i} are real orthonormal eigenvectors, and λ_{i} are the corresponding real eigenvalues. In matrix form, $P=F \Lambda F^{-1}$, where F is the matrix with columns f_{1}, \ldots, f_{n}.

Definition 2. The inner product $\langle f, g\rangle_{\pi}$ for vectors f and g with respect to the stationary distribution π is defined as $\langle f, g\rangle_{\pi}=f^{T} \Pi g$, where Π is a diagonal matrix with entries of π. This is equal to $\sum_{i} f(i) g(i) \pi_{i}=$ $\mathbb{E}_{X \sim \pi}[f(X) g(X)]$.

Fact 3. If P is reversible w.r.t π, then it is also self-adjoint with respect to $\langle\cdot, \cdot\rangle_{\pi}$.
Proof. The inner product of f and $P g$ under π is given by:

$$
\begin{aligned}
\langle f, P g\rangle_{\pi} & =\langle f, \Pi P g\rangle \\
& =\left\langle f,(\Pi P)^{T} g\right\rangle \\
& =\left\langle f, P^{T} \Pi g\right\rangle \quad\left(\text { since } P^{T} \text { is the adjoint of } P \text { with respect to }\langle\cdot, \cdot\rangle\right) \\
& =\langle P f, \Pi g\rangle \\
& =\langle P f, g\rangle_{\pi}
\end{aligned}
$$

This equality demonstrates that P maintains self-adjointness under the given inner product.
Remark 2. The Spectral Theorem ensures that a matrix P can be expressed as $P=\sum_{i} \lambda_{i} f_{i} f_{i}^{T} \Pi=$ $F \Lambda F^{T} \Pi=F \Lambda F^{-1}$, since $F^{T} \Pi F=I_{s}$, where I_{s} is the identity matrix of size s, so $F^{-1}=F^{T} \Pi$.

3 Part 3: Poincaré Inequality

Variational Characterization of Eigenvectors

For a matrix P :

$$
\lambda_{2}(P)=\sup \left\{\frac{\langle f, P f\rangle_{\pi}}{\langle f, f\rangle_{\pi}}:\langle f, 1\rangle_{\pi}=0\right\}
$$

This implies:

$$
\lambda_{2}(P) \geq \frac{\langle f, P f\rangle_{\pi}}{\langle f, f\rangle_{\pi}}, \quad \text { for all } f \text { such that }\langle f, 1\rangle_{\pi}=0
$$

It follows that:

$$
\lambda_{2}(P)\langle f, f\rangle_{\pi} \geq\langle f, P f\rangle_{\pi}
$$

$$
\begin{gathered}
-\lambda_{2}(P)\langle f, f\rangle_{\pi} \leq-\langle f, P f\rangle_{\pi} \\
\left(I-\lambda_{2}(P)\right)\langle f, f\rangle_{\pi} \leq\langle f,(I-P) f\rangle_{\pi}, \quad \text { for all } f \text { such that }\langle f, 1\rangle_{\pi}=0
\end{gathered}
$$

Define the centered function:

$$
\hat{f}=f-\mathbb{E}_{\pi}[f] \cdot \mathbb{1}, \quad \text { since }\langle\hat{f}, 1\rangle_{\pi}=0
$$

This leads to the inequality:

$$
\begin{aligned}
& \left(1-\lambda_{2}(P)\right)\langle\hat{f}, \hat{f}\rangle_{\pi} \leq\langle\hat{f},(I-P) \hat{f}\rangle_{\pi} \\
& \left(1-\lambda_{2}(P)\right)\langle\hat{f}, \hat{f}\rangle_{\pi} \leq\langle f,(I-P) f\rangle_{\pi}
\end{aligned}
$$

justified by $(I-P) \mathbb{1}_{s}=0$ and the fact that $I-P$ is self-adjoint with respect to $\langle\cdot, \cdot\rangle_{\pi}$.
Moreover, we find that:

$$
\langle\hat{f}, \hat{f}\rangle_{\pi}=\mathbb{E}_{\pi}\left[\left(f-\mathbb{E}_{\pi}[f]\right)^{2}\right]=\operatorname{Var}_{\pi}\left(f-\mathbb{E}_{\pi}[f]\right)
$$

Definition 3. The Laplacian of P is defined as $L=I-P$.
Remark 3. - L is self-adjoint with respect to $\langle\cdot, \cdot\rangle_{\pi}$.

- L is positive semi-definite, and $L \mathbb{1}=0$.
- For a d-regular graph, $L=\frac{1}{d}(d I-A)=\frac{1}{d} \hat{L}$, where \hat{L} is the standard Laplacian of the graph.

Theorem 3 (Poincaré Inequality). From the calculations above, we establish the Poincaré Inequality:

$$
\operatorname{Var}_{\pi}\left[f-\mathbb{E}_{\pi}[f]\right] \leq \frac{1}{1-\lambda_{2}(P)}\langle f, L f\rangle_{\pi}, \quad \forall f
$$

Here, $E_{P}(f, f)$ denotes the Dirichlet form.
Remark 4. - If the magnitude of ∇f is small, then the variance $\operatorname{Var}_{\pi}(f)$ is also small.

- The second eigenvalue λ_{2} can be characterized as:

$$
\begin{aligned}
1-\lambda_{2} & =\inf \left\{\frac{\langle f, L f\rangle_{\pi}}{\operatorname{Var}_{\pi}\left(f-\mathbb{E}_{\pi}[f]\right)}: f \neq 0\right\} \\
\lambda_{2} & =1-\inf \left\{\frac{\langle f, L f\rangle_{\pi}}{\operatorname{Var}_{\pi}\left(f-\mathbb{E}_{\pi}[f]\right)}: f \neq 0\right\} \\
& =\sup \left\{1-\frac{\langle f, L f\rangle_{\pi}}{\operatorname{Var}_{\pi}(f)}: f \neq 0\right\}
\end{aligned}
$$

For any function f, this provides a lower bound on λ_{2}.

- Moreover, for any value λ such that the inequality

$$
\lambda \geq 1-\frac{\langle f, L f\rangle_{\pi}}{\operatorname{Var}_{\pi}(f)}
$$

holds for all non-zero f, we have an upper bound on λ_{2}, specifically $\lambda_{2} \leq \lambda$.

