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Glauber dynamics

1 A Poincaré inequality

We first review some relevant definitions of Markov chains.

Definition 1. Let P be the transition matrix of a (finite) Markov chain with state space Ω. Then L = I−P
is called the Laplacian of the Markov chain. For functions f and g from Ω to R, we define the Dirichlet
form by

EP (f, g) = ⟨f, Lg⟩π =
∑
x∈Ω

f(x)(Lg)(x)π(x) .

For reversible Markov chains, we have a more insightful formula for the Dirichlet form. Rewriting the
definition, we have

EP (f, g) = ⟨f, (I − P )g⟩π
=
∑
x∈Ω

π(x)f(x)((I − P )g)(x)

=
∑
x∈Ω

π(x)f(x)

(
g(x)−

∑
y∈Ω

P (x, y)g(y)

)
=
∑
x,y∈Ω

π(x)f(x)P (x, y)(g(x)− g(y)) .

Reversibility gives π(x)P (x, y) = π(y)P (y, x), so this equals∑
x,y∈Ω

π(x)P (x, y)f(y)(g(y)− g(x)) .

Averaging these two expressions gives a new formula for the Dirichlet form

EP (f, g) =
1

2

∑
x,y∈Ω

π(x)P (x, y)(f(x)− f(y))(g(x)− g(y)) .

In particular, we get

EP (f, f) =
1

2

∑
x,y∈Ω

π(x)P (x, y)(f(x)− f(y))2 . (1)

Note that by reversibility the quantity π(x)P (x, y) is a property of the edge e = {x, y} and does not depend
on the order of the endpoints. This is sometimes called the conductance of e, a terminology derived from
electrical network. The quantities f(x)−f(y) and g(x)−g(y) can be understood as the gradients of f and
g along the edge e. Thus, the expression (1) represents the inner product (induced by edge conductance)
of the gradients of two functions, similar to the Dirichlet form in functional analysis.

Recall that if P is ergodic and reversible with stationary distribution π, any function f : Ω → R satisfies
a Poincaré inequality

VarX∼π(f(X)) ≤ 1

1− λ2(P )
EP (f, f) . (2)
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The inequality (2) is also called the spectral gap inequality since 1 is the unique largest eigenvalue of P if
it is ergodic and reversible.

Intuitively, the Dirichlet form (1) quantifies the “local variance” of f along the transitions. In this
regard, the spectral gap inequality (2) implies that the greater the spectral gap, the greater the local
variance compared to the global variance, which means that the Markov chain mixes more rapidly. This
matches our intuition from spectral graph theory where graphs with large spectral gap possess “good
expansion properties.”

Example 1. We consider a random walk on the complete graph on n vertices. Its adjacency matrix A is
given by 11⊤ − I, so we have the transition matrix

P =
1

n− 1
A =


0 1

n−1
· · · 1

n−1
1

n−1
0 · · · 1

n−1
...

...
. . .

...
1

n−1
1

n−1
· · · 0

 .

It is not difficult to see that the spectrum of P is given by

spec(P ) =

(
1,− 1

n− 1
, · · · ,− 1

n− 1

)
.

In particular, we have λ2(P ) = − 1
n−1

< 0, so complete graphs have excellent spectral gap.

In general, for a random walk on d-regular graphs, the transition matrix is given by P = 1
d
A. Some

d-regular graphs (e.g. Ramanujan graphs) satisfy λ2(P ) = Θ(d−1/2), which make them good expanders
and also rapidly mixing Markov chains. It is known (e.g. the Alon–Boppana bound) that such graphs
exhibit asymptotically largest possible spectral gap.

2 Glauber dynamics

Glauber dynamics or Gibbs sampler is an algorithm for sampling from a probability distribution π on an
n-dimensional state space Ω = Σ1× · · ·×Σn (for the Ising model, we set Σ1 = · · ·Σn = {±1}). It is useful
when the conditional distribution of one component given all the other components is easy to compute.
Glauber dynamics defines a probability transition kernel

P =
1

n

n∑
i=1

Pi

where each Pi is defined by
(Pif)(y) = EX∼π[f(X) | X∼i = y∼i]

or equivalently,
e⊤y Pi = π(· | X∼i = y∼i) .

Here, x∼i means all the components of x except for i. One step of the transition of Glauber dynamics can
be described as the following.

1. Select i from {1, · · · , n} uniformly at random.

2. Resample the ith component Xi from the conditional distribution Xi | X∼i.

Our goal now is to analyze the behavior of Glauber dynamics. For notational convenience, we write
Ω∼i = Σ1 × · · · × Σi−1 × Σi+1 × · · · × Σn and let π∼i denote the marginal distribution on Ω∼i.
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Fact 1. Suppose π(x) > 0 for all x ∈ Ω. Then P is ergodic.

Proof. We show that P n has positive entries. Indeed, for any (x1, · · · , xn), (y1, · · · , yn) ∈ Ω, each step of
the transition

(x1, · · · , xn) → (y1, x2, · · · , xn) → (y1, y2, x3, · · · , xn) → · · · → (y1, · · · , yn)

has positive probability.

Fact 2. P is reversible with stationary distribution π.

Proof. We verify that P and π satisfy the detailed balance equation:

π(x)P (x, y) =
n∑

i=1

1{x∼i = y∼i}π(x) Pr
X∼π

[X = y | X∼i = x∼i]

=
n∑

i=1

1{x∼i = y∼i}
π(x)π(y)

π∼i(x∼i)

=
n∑

i=1

1{x∼i = y∼i}
π(x)π(y)

π∼i(y∼i)

= π(y)P (y, x) .

Given π(x) > 0 for all x ∈ Ω, we have proved that P is ergodic and reversible, thus satisfying the
spectral gap inequality (2). Now we compute the Dirichlet form EP (f, f) using the formula (1):

EP (f, f) =
1

2

∑
x,y∈Ω

π(x)P (x, y)(f(x)− f(y))2

=
1

2n

n∑
i=1

∑
x,y∈Ω

π(x)Pi(x, y)(f(x)− f(y))2

=
1

2n

n∑
i=1

∑
x∼i=y∼i

π(x)π(y)

π∼i(x∼i)
(f(x)− f(y))2

=
1

2n

n∑
i=1

∑
z∈Ω∼i

∑
x∼i=y∼i=z

π(x | x∼i = z)π(y | y∼i = z)π∼i(z)(f(x)− f(y))2

=
1

n

n∑
i=1

∑
z∈Ω∼i

π∼i(z)VarX∼π(f(X) | X∼i = z)

=
1

n

n∑
i=1

EX∼πVar(f(X) | X∼i)

=
1

n
EX∼π

n∑
i=1

Var(f(X) | X∼i) .

Hence, the spectral gap inequality implies

VarX∼π(f(X)) ≤ 1

1− λ2(P )
· 1
n
EX∼π

n∑
i=1

Var(f(X) | X∼i) . (3)
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Remark 1. If π is the product measure, i.e. if X1, · · · , Xn are independent, the Efron–Stein inequality
states that

VarX∼π(f(X)) ≤ EX∼π

n∑
i=1

Var(f(X) | X∼i)

which looks very similar to the inequality (3), the only difference being the multiplicative factor. Thus,
the Efron–Stein inequality can be viewed as a Poincaré inequality for product measure. This is the topic
of the next lecture.

Example 2. SupposeX1, · · · , Xn ∈ {±1} are random variables whose joint distribution function is positive
everywhere. We may obtain a bound of the variance of

∑n
i=1Xi using the Glauber dynamics P of the joint

distribution. Applying the inequality (3) gives

Var

(
n∑

i=1

Xi

)
≤ 1

1− λ2(P )
· 1
n
E

n∑
i=1

Var

(
n∑

i=1

Xi

∣∣∣∣∣X∼i

)

=
1

1− λ2(P )
· 1
n
E

n∑
i=1

Var(Xi | X∼i)

≤ 1

1− λ2(P )

where the last inequality comes from the fact that the variance of a random variable on {±1} is at most 1.
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