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The Efron-Stein Inequality

1 Review

Last time, we proved the equivalence of the following two statements:

1. (Poincare Inequality Form) If X = (X1, ..., Xn) has independent coordinates µ = ⊗n
i=1µi, then

∀f : Rn → R,

Var (f(X)) ≤
n∑

i=1

Ex∼µ[Var (f(X)|X∼i)]

2. (Spectral Form) Let P = 1
n
Pi be the Glauber dynamics, with Pif := E[f(X)|X∼i], then λ2(P ) = 1− 1

n
.

The two (equivalent) statements above are statements of the Efron-Stein Inequality, and the goal of
this lecture is to prove the inequality and put it to some practical use.

Theorem 1 (Efron-Stein Inequality). If X = (X1, ..., Xn) has independent coordinates µ = ⊗n
i=1µi, then

∀f : Rn → R,

Var (f(X)) ≤
n∑

i=1

Ex∼µ[Var (f(X)|X∼i)]

or equivalently, if P = 1
n
Pi be the Glauber dynamics, with Pif := E[f(X)|X∼i], then λ2(P ) = 1− 1

n
.

In fact, the Spectral Form of the Efron-Stein inequality can be weakened to λ2(P ) ≤ 1− 1
n
by considering

functions depending on one entry, but we’ll stick to the strong form in these notes.

2 The Spectral Decomposition

What are the eigenvectors of Pi? First, lets introduce some notation regarding the tensor product of
functions. Suppose that f1 : Σ1 → R, ..., fn : Σn → R, then we define

(f1 ⊗ ...⊗ fn)(x) := f1(x1) · ... · fn(xn)

where (f1 ⊗ ...⊗ fn) : Σ1 × ...× Σn → R.

Lemma 1. Let 1 = ψ
(1)
i , ..., ψ

(|Σi|)
i be an L2(µi) orthonormal basis, i.e. Exi∼µi

[ψ
(a)
i · ψ(b)

i ] = Ia=b. Then

Pi(f1 ⊗ ...⊗ fi=1 ⊗ ψ
(a)
i ⊗ fi+1 ⊗ ...⊗ fn) = Ia=1f1 ⊗ ...⊗ fi=1 ⊗ ψ

(a)
i ⊗ fi+1 ⊗ ...⊗ fn

In words, these specific functions produce eigenfunctions with eigenvalues either 0 or 1, and as we shall
see, these functions (namely their tensor products) form a basis of the eigenspace of P . Note that the above
functions exist by the Gram-Schmidt process. Before proceeding with a proof, let’s consider a concrete
example of such a basis.

Example 1. Let Σ1 = ... = Σn with µi ∼ unif(Σi). Then, by definition ψ
(1)
i (xi) = 1, and then ψ

(2)
i (xi) = 1

if xi = 1 or −1 if xi = −1, etc.
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Proof of Lemma 1. We have that

Pi(f1 ⊗ ...⊗ fi=1 ⊗ ψ
(a)
i ⊗ fi+1 ⊗ ...⊗ fn)(x) = f1(x1) · ... · fi−1(xi−1) · Eµ[ψ

(a)
i |x∼i] · fi+1(xi+1) · ... · fn(xn)

Note that by definition, the expectation wraps around the entire term, but by linearity of conditional
expectation, we end up with an expression containing an expectation over only the target term.

Plucking out the expectation portion, Eµ[ψ
(a)
i |x∼i] = Exi∼µi

[ψ
(a)
i ] = Exi∼µi

[ψ
(1)
i · ψ(a)

i (xi)] = Ia=1, where
the first equality follows from definition of the respective expectations, the second equality follows from
the definition ψ

(1)
i = 1, and the third equality follows from orthonormality of the basis. In other words,

the proof follows by unwinding the carefully laid definitions above.

With this technical lemma established, we’re now in a position to finish up the proof of Efron-Stein.

Lemma 2. ∀a1 ∈ [|Σ1|], ..., an ∈ [|Σn|], we have that

P (ψ
(a1)
1 ⊗ ...⊗ ψ(an)

n ) =
#{i : ai = 1}

n
(ψ

(a1)
1 ⊗ ...⊗ ψ(an)

n

and this is a complete eigenbasis for P , where P represents the Glauber dynamics.

Proof.

P (⊗m
i=1ψ

(ai)
i ) =

1

n

n∑
j=1

Pj(⊗m
i=1ψ

(ai)
i ) =

1

n

n∑
j=1

Iaj=1ψ
(ai)
i

where again, our proof follows largely from the definitions in the setup. It follows that for the eigenvector
1⊗ ...⊗1 we have eigenvalue 1, and for 1⊗ ...⊗ψ(a)

i ⊗ ...⊗1 we have eigenvalue n−1
n

=⇒ λ2(P ) = 1− 1
n
.

As the last line in the above proof indicates, Lemmas 1 and 2 establish the spectral form of the Efron-
Stein Inequality. Having established our core result, we may now move on to applications involving control
of variance of quantities of interest.

3 Applications

Let x ∈ {±1}n be independent coordinates, then by Efron-Stein, we have that

Example 2 (Operator Norm).

Var (⟨w, x⟩) ≤
n∑

i=1

EVar (⟨w, x⟩|x∼i) ≤
n∑

i=1

w2
i = ||w||22

and so if Σ := E[x · xT ]− E[x] · E[xT ], then

=⇒ |Σ|op = sup
||w||2=1

⟨w,Σw⟩ ≤ 1

We state a basic technical fact, which we use in tandem with Efron-Stein to control the Rademacher
complexity of a rectangularly-bounded set.

Fact 1. X a r.v. such that X ∈ [a, a+ 2M ], then Var (X) ≤M2.

Proof. This follows readily from observing that a random variable X ∈ [−1, 1] has variance Var(X) ≤ 1,
and the general result follows by shifting and scaling.
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Example 3 (Rademacher Complexity). F ⊆ [−M,M ]n, and we define

Rad (F ) := Eσ∼unif({±1}n) sup
f∈F

⟨σ, f⟩

We now compute by Efron-Stein

Var (sup
f∈F

⟨σ, f⟩) ≤
n∑

i=1

EσVar (sup
f∈F

⟨σ, f⟩|σ∼i) ≤ O(nM2)

Where the second inequality follows by noticing that by flipping σi, then ⟨σ, f⟩ changes by ±2fi (which is
at most 2M).

Example 4 (A simple statistical application). f ∗ ∈ F ⊆ Rn, and y = f ∗ + ϵ where ϵ is noise with
independent coordinates (ϵ ∈ {−σ, σ}n), and we consider the Ordinary Least Squares Estimator (LSE),
defined as

f̂ = argminf∈F |y − f |22
We have that

|f ∗ − f̂ |22 ≤ 2⟨f̂ − f ∗, ϵ⟩ ≤ 2 sup
f∈F

⟨f − f ∗, ϵ⟩

and so with high probability,

≤ 2σE sup
g∈F−f∗

⟨g, ϵ⟩+O((Var ( sup
g∈F−f∗

)⟨g, ϵ⟩)1/2) ≤ 2σRad (F − f ∗) +O(σM
√
n)

4 Lipschitz Concentration

We now establish a more abstract definition, which we can use to address concentration of random variables
with product distributions under Lipschitz functions. Note that in what follows, we aren’t necessarily
dealing with product distributions, as we are really appealing to the characterization of the spectral gap
of the Glauber dynamics in terms of the corresponding Poincare inequality exhibited in the prior lecture.
In the special case of product measures, we have λ2(P ) = 1− 1/n, which is the content of the Efron-Stein
Inequality.

Definition 1 (Hamming Distance and L-Lipschitz Functions). Letting the Hamming Distance be defined
as dH(x, y) := #{i : xi ̸= yi}, f : ⊗n

i=1Σi → R is L-Lipschitz with respect to dH if

|f(x)− f(x′)| ≤ LdH(x, y)

Example 5 (L-Lipschitz Functions). If f L-Lipschitz, then

Var (f(X)) ≤ 1

1− λ2(P )
· 1
n

n∑
i=1

EVar (f(X)|X∼i) ≤
1

1− λ2
· L

2

2

where the first inequality follows from the corollary to the spectral theorem, and the second from the
definition of Lipschitzness.

Lastly, we state but do not prove the following concentration of measure result for L-Lipschitz functions,
which follows by recursively applying the Poincare inequality to the moment generating function.

Theorem 2.

P[|f(X)− E[f(X)]| ≥ t] ≤ 6 exp

(
−ct

√
1− λ2
L

)
for some constant c. Moreover, letting f =

∑n
i=1 xi, suppose that 1 − λ2 ≍ c

n
, then f(X) − E[f(X)] ∈

[−c log(2/δ)
√
n, c log(2/δ)

√
n] with probability 1− δ.

A detailed proof of the above result can be found in [1], Section 4.4.
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