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Mixing and distance measure

1 Warm-up

We first warm up by computing the spectral gap in an important example. This example behaves quite
differently from the Gibbs sampler for product measures which we saw last class.

Question: Compute the spectral gap of simple random walk on a cycle on n vertices.
Let’s construct the graph of the cycle on n vertices. The cycle is a 2-regular graph, as shown in fig. 1.
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Figure 1: A 2-regular graph with n vertices.

The spectral gap is defined as λ1−λ2, where λ2 is the second largest eigenvalue of the transition matrix
P of the simple random walk. Based on fig. 1, the transition matrix P of the simple random walk on the
cycle follows

P =
1

2
A =

1

2



0 1 0 . . . 0 1
1 0 1 0 . . . 0
0 1 0 1 0 . . .

. . . . . . . . . . . .

0 . . . 0 1 0 1
1 0 . . . 0 1 0


,

and the Laplacian matrix of the cycle is L = I − P . We want compute 1− λ2(P ).

Answer: 1− λ2(P ) = c
n2 for some constant c.

Proof. Let φw(x) = e2πiwx for w = 0, 1, . . . , n− 1. We have

(Pφw)(x) =
1

2

(
e2πi(w+1)x/n + e2πi(w−1)x/n

)
= e2πiwx/n e

2πiw/n + e−2πiw/n

2
= φw(x) cos(2πw/n).
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Thus φw is an eigenvector of P with eigenvalue cos(2πw/n). By Taylor expansion, we have

λ2 = cos(2π/n) = 1− 2π2

n2
+O(n−4)

1− λ2 =
2π2

n2
+O(n−4).

Implication: By Poincaré inequality,

VarX∼Unif([n])(f) ≤
1

1− λ2

⟨f, Lf⟩

≈ n2

c
⟨f, Lf⟩

2 Distance measure

Definition 1. Let f be a convex function, and let τ, π be probability measures. Define

df (τ, π) = Eπ

[
f

(
dτ

dπ

)]
− f

(
Eπ

[
dτ

dπ

])
︸ ︷︷ ︸

f(1)

. (1)

By Jensen’s inequality, df (τ, π) ≥ 0.

Examples:

1. Total variance f(x) = 1
2
|x− 1|

dTV(τ, π) =
1

2
E
[∣∣∣∣dτdπ − 1

∣∣∣∣]
=

1

2

∑
x

∣∣∣∣τ(x)π(x)
− 1

∣∣∣∣ π(x) discrete case

=
1

2

∑
x

|τ(x)− π(x)|

=
1

2
|τ − π|l1

2. KL divergence f(x) = x log(x) f is convex becuase f ′(x) = log(x) + 1 is an increasing function.

dKL(π, τ) = Eπ

[
dτ

dπ
log

dτ

dπ

]
=

∑
x

τ(x) log

(
τ(x)

π(x)

)
= Eτ

[
log

(
dτ

dπ

)]
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3. χ2 divergence f(x) = (x− 1)2

dχ2(π, τ) = Eπ

[(
dτ

dπ
− 1

)2
]

= Eπ

[(
dτ

dπ

)2
]
− 1

= Varπ

(
dτ

dπ

)

3 Mixing time

Definition 2. ϵ-mixing time of a Markov chain P with stationary distribution π is

tmix(ϵ) = inf{t ≥ 1 : ∀τ dTV(τP
t, π) ≤ ϵ}.

Figure 2: Cut-off phenomenon of mixing time. In many (but not all cases), mixing has a very sharp phase
transition between TV distance 1 and 0 so the particular value of ϵ is not so important.

Theorem 1.

dTV(τ, π) ≤
√

2dKL(τ, π)︸ ︷︷ ︸
Pinsker’s inequality

≤
√
2dχ2(τ, π). (2)

Proof. The second inequality follows as below

dKL(τ, π) = Eπ

[
dτ

dπ
log

(
1 +

dτ

dπ
− 1

)]
≤ Eπ

[
dτ

dπ

(
dτ

dπ
− 1

)]
= Eπ

[(
dτ

dπ

)2
]
− 1.
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Theorem 2. Assume P reversible with respect to π. Then

dχ2(τP, π) ≤ max
i ̸=1

[
|λi|2

]
dχ2(τ, π). (3)

Corollary 1.

dχ2(τP t, π) ≤ max
i ̸=1

[
|λi|2

]t
dχ2(τ, π). (4)

This trivially follows from the above theorem. By definition of ϵ-mixing time, we have (we use t in
short)

t =
log(dχ2(τ, π)/ϵ2)

log(maxi ̸=1 |λi|)
=⇒ dχ2(τP t, π) ≤ ϵ2.

Lemma 1.

d(τP )

dπ
= P

dτ

dπ
(5)

Proof. This proof is for discrete case. Let Π = diag(π).

dτ

dπ
= (τΠ−1)⊤,

d(τP )

dπ
= ((τP )Π−1)⊤.

By reversibility, ΠP = P⊤Π, so P = Π−1P⊤Π. Thus

(τPΠ−1)⊤ = (τΠ−1P⊤)⊤

= P (τΠ−1)⊤

= P
dτ

dπ
.

Similar proof follows for dτP
dπ

.

Let’s prove the theorem with above lemma. Let s be the number of state space.

Proof.

dχ2(τP, π) = Eπ

[(
d(τP )

dπ
− 1

)2
]

= Eπ

[(
P
dτ

dπ
− 1

)2
]

=
s∑

i=2

⟨fi, P
dτ

dπ
⟩2π + ⟨f1, P

dτ

dπ
− 1⟩2π︸ ︷︷ ︸

=Eπ[ dτdπ−1]=0

=
s∑

i=2

⟨Pfi,
dτ

dπ
⟩2π

≤ max
i ̸=1

[
|λi|2

] s∑
i=2

⟨fi,
dτ

dπ
⟩2π︸ ︷︷ ︸

dχ2 (τ,π)

.
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