Mixing and distance measure

1 Warm-up

We first warm up by computing the spectral gap in an important example. This example behaves quite differently from the Gibbs sampler for product measures which we saw last class.

Question: Compute the spectral gap of simple random walk on a cycle on n vertices.
Let's construct the graph of the cycle on n vertices. The cycle is a 2-regular graph, as shown in fig. 1 .

Figure 1: A 2-regular graph with n vertices.
The spectral gap is defined as $\lambda_{1}-\lambda_{2}$, where λ_{2} is the second largest eigenvalue of the transition matrix P of the simple random walk. Based on fig. 1, the transition matrix P of the simple random walk on the cycle follows

$$
P=\frac{1}{2} A=\frac{1}{2}\left[\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 1 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
0 & 1 & 0 & 1 & 0 & \ldots \\
& \ddots & \ddots & \ddots & \ddots & \\
0 & \ldots & 0 & 1 & 0 & 1 \\
1 & 0 & \ldots & 0 & 1 & 0
\end{array}\right]
$$

and the Laplacian matrix of the cycle is $L=I-P$. We want compute $1-\lambda_{2}(P)$.
Answer: $\quad 1-\lambda_{2}(P)=\frac{c}{n^{2}}$ for some constant c.
Proof. Let $\varphi_{w}(x)=e^{2 \pi i w x}$ for $w=0,1, \ldots, n-1$. We have

$$
\begin{aligned}
\left(P \varphi_{w}\right)(x) & =\frac{1}{2}\left(e^{2 \pi i(w+1) x / n}+e^{2 \pi i(w-1) x / n}\right) \\
& =e^{2 \pi i w x / n} \frac{e^{2 \pi i w / n}+e^{-2 \pi i w / n}}{2} \\
& =\varphi_{w}(x) \cos (2 \pi w / n)
\end{aligned}
$$

Thus φ_{w} is an eigenvector of P with eigenvalue $\cos (2 \pi w / n)$. By Taylor expansion, we have

$$
\begin{aligned}
\lambda_{2} & =\cos (2 \pi / n)=1-\frac{2 \pi^{2}}{n^{2}}+O\left(n^{-4}\right) \\
1-\lambda_{2} & =\frac{2 \pi^{2}}{n^{2}}+O\left(n^{-4}\right)
\end{aligned}
$$

Implication: By Poincaré inequality,

$$
\begin{aligned}
\operatorname{Var}_{X \sim \operatorname{Unif}([n])}(f) & \leq \frac{1}{1-\lambda_{2}}\langle f, L f\rangle \\
& \approx \frac{n^{2}}{c}\langle f, L f\rangle
\end{aligned}
$$

2 Distance measure

Definition 1. Let f be a convex function, and let τ, π be probability measures. Define

$$
\begin{equation*}
d_{f}(\tau, \pi)=\mathbb{E}_{\pi}\left[f\left(\frac{d \tau}{d \pi}\right)\right]-\underbrace{f\left(\mathbb{E}_{\pi}\left[\frac{d \tau}{d \pi}\right]\right)}_{f(1)} \tag{1}
\end{equation*}
$$

By Jensen's inequality, $d_{f}(\tau, \pi) \geq 0$.

Examples:

1. Total variance $f(x)=\frac{1}{2}|x-1|$

$$
\begin{aligned}
d_{\mathrm{TV}}(\tau, \pi) & =\frac{1}{2} \mathbb{E}\left[\left|\frac{d \tau}{d \pi}-1\right|\right] \\
& =\frac{1}{2} \sum_{x}\left|\frac{\tau(x)}{\pi(x)}-1\right| \pi(x) \quad \text { discrete case } \\
& =\frac{1}{2} \sum_{x}|\tau(x)-\pi(x)| \\
& =\frac{1}{2}|\tau-\pi|_{l_{1}}
\end{aligned}
$$

2. KL divergence $f(x)=x \log (x) f$ is convex becuase $f^{\prime}(x)=\log (x)+1$ is an increasing function.

$$
\begin{aligned}
d_{\mathrm{KL}}(\pi, \tau) & =\mathbb{E}_{\pi}\left[\frac{d \tau}{d \pi} \log \frac{d \tau}{d \pi}\right] \\
& =\sum_{x} \tau(x) \log \left(\frac{\tau(x)}{\pi(x)}\right) \\
& =\mathbb{E}_{\tau}\left[\log \left(\frac{d \tau}{d \pi}\right)\right]
\end{aligned}
$$

3. χ^{2} divergence $f(x)=(x-1)^{2}$

$$
\begin{aligned}
d_{\chi^{2}}(\pi, \tau) & =\mathbb{E}_{\pi}\left[\left(\frac{d \tau}{d \pi}-1\right)^{2}\right] \\
& =\mathbb{E}_{\pi}\left[\left(\frac{d \tau}{d \pi}\right)^{2}\right]-1 \\
& =\operatorname{Var}_{\pi}\left(\frac{d \tau}{d \pi}\right)
\end{aligned}
$$

3 Mixing time

Definition 2. ϵ-mixing time of a Markov chain P with stationary distribution π is

$$
t_{\mathrm{mix}}(\epsilon)=\inf \left\{t \geq 1: \forall \tau \quad d_{\mathrm{TV}}\left(\tau P^{t}, \pi\right) \leq \epsilon\right\}
$$

Figure 2: Cut-off phenomenon of mixing time. In many (but not all cases), mixing has a very sharp phase transition between TV distance 1 and 0 so the particular value of ϵ is not so important.

Theorem 1.

$$
\begin{equation*}
\underbrace{d_{T V}(\tau, \pi) \leq \sqrt{2 d_{K L}(\tau, \pi)}}_{\text {Pinsker's inequality }} \leq \sqrt{2 d_{\chi^{2}}(\tau, \pi)} \tag{2}
\end{equation*}
$$

Proof. The second inequality follows as below

$$
\begin{aligned}
d_{\mathrm{KL}}(\tau, \pi) & =\mathbb{E}_{\pi}\left[\frac{d \tau}{d \pi} \log \left(1+\frac{d \tau}{d \pi}-1\right)\right] \\
& \leq \mathbb{E}_{\pi}\left[\frac{d \tau}{d \pi}\left(\frac{d \tau}{d \pi}-1\right)\right] \\
& =\mathbb{E}_{\pi}\left[\left(\frac{d \tau}{d \pi}\right)^{2}\right]-1
\end{aligned}
$$

Theorem 2. Assume P reversible with respect to π. Then

$$
\begin{equation*}
d_{\chi^{2}}(\tau P, \pi) \leq \max _{i \neq 1}\left[\left|\lambda_{i}\right|^{2}\right] d_{\chi^{2}}(\tau, \pi) \tag{3}
\end{equation*}
$$

Corollary 1.

$$
\begin{equation*}
d_{\chi^{2}}\left(\tau P^{t}, \pi\right) \leq \max _{i \neq 1}\left[\left|\lambda_{i}\right|^{2}\right]^{t} d_{\chi^{2}}(\tau, \pi) \tag{4}
\end{equation*}
$$

This trivially follows from the above theorem. By definition of ϵ-mixing time, we have (we use t in short)

$$
t=\frac{\log \left(d_{\chi^{2}}(\tau, \pi) / \epsilon^{2}\right)}{\log \left(\max _{i \neq 1}\left|\lambda_{i}\right|\right)} \Longrightarrow d_{\chi^{2}}\left(\tau P^{t}, \pi\right) \leq \epsilon^{2}
$$

Lemma 1.

$$
\begin{equation*}
\frac{d(\tau P)}{d \pi}=P \frac{d \tau}{d \pi} \tag{5}
\end{equation*}
$$

Proof. This proof is for discrete case. Let $\Pi=\operatorname{diag}(\pi)$.

$$
\frac{d \tau}{d \pi}=\left(\tau \Pi^{-1}\right)^{\top}, \quad \frac{d(\tau P)}{d \pi}=\left((\tau P) \Pi^{-1}\right)^{\top}
$$

By reversibility, $\Pi P=P^{\top} \Pi$, so $P=\Pi^{-1} P^{\top} \Pi$. Thus

$$
\begin{aligned}
\left(\tau P \Pi^{-1}\right)^{\top} & =\left(\tau \Pi^{-1} P^{\top}\right)^{\top} \\
& =P\left(\tau \Pi^{-1}\right)^{\top} \\
& =P \frac{d \tau}{d \pi}
\end{aligned}
$$

Similar proof follows for $\frac{d \tau P}{d \pi}$.
Let's prove the theorem with above lemma. Let s be the number of state space.
Proof.

$$
\begin{aligned}
d_{\chi^{2}}(\tau P, \pi) & =\mathbb{E}_{\pi}\left[\left(\frac{d(\tau P)}{d \pi}-1\right)^{2}\right] \\
& =\mathbb{E}_{\pi}\left[\left(P \frac{d \tau}{d \pi}-1\right)^{2}\right] \\
& =\sum_{i=2}^{s}\left\langle f_{i}, P \frac{d \tau}{d \pi}\right\rangle_{\pi}^{2}+\underbrace{\left\langle f_{1}, P \frac{d \tau}{d \pi}-1\right\rangle_{\pi}^{2}}_{=\mathbb{E}_{\pi}\left[\frac{d \tau}{d \pi}-1\right]=0} \\
& =\sum_{i=2}^{s}\left\langle P f_{i}, \frac{d \tau}{d \pi}\right\rangle_{\pi}^{2} \\
& \leq \max _{i \neq 1}\left[\left|\lambda_{i}\right|^{2}\right] \underbrace{\sum_{i=2}^{s}\left\langle f_{i}, \frac{d \tau}{d \pi}\right\rangle_{\pi}^{2}}_{d_{\chi^{2}}(\tau, \pi)}
\end{aligned}
$$

