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Dobrushin’s Condition

1 Review

1.1 What We’re at

Let π be a probability measure and we want to sample from it. P is the transition matrix s.t. πP = π
and the process is reversible and ergodic. Now we know that:

• dχ2(τP t, π) ≤ (maxi |λi|)t dχ2(τ, π)

We can always ensure that maxi |λi| = λ2 by letting P ′ = 1
2
(I + P ).

• λ2(P ) is the smallest λ2 s.t. Varπ(f) ≤ 1
1−λ2

⟨f, (I − P )f⟩π.

Here’re some examples:

• SRW on s-cycle: 1− λ2 = O
(

1
s2

)
• Gibbs sampler on a prob measure π = π1 ⊗ · · · ⊗ πn measure on E1 ⊗ · · · ⊗ En : e.g. {±1}n

By Efron-Stein’s formula, we know that λ2 = n−1
n

= 1 − 1
n
= 1 − 1

log2 s
, where s = # states = 2n.

Then 1− λ2 =
1

log2 s
.

1.2 What’s Next

• Gibbs Sampler under weak dependence: ”Dobrushin’s condition”

2 Dobrushin Influence Matrix

Let π(x1, ..., xn) be a prob measure on
⊗n

i=1 Ei, where xi ∈ Ei. Define the Dobrushin Influence Matrix be
R ∈ Rn×n, where

Rij = max
y,z

y∼j=z∼j

|π(xi = ·|x∼i = y∼i)− π(xi = ·|x∼i = z∼i)|TV.

Remark 1. | · |TV stands for the Total Variation distance where |p−q|TV = dTV(p, q) =
1
2

∑
x |p(x)−q(x)|

for all probability measure p, q.

Remark 2. ∀i, Rii = 0.

Remark 3. If π is a product measure, that is, all elements are independent, then R = 0n×n. That’s because
Rij = max y,z

y∼j=z∼j
|π(xi = ·|x∼i = y∼i)− π(xi = ·|x∼i = z∼i)|TV = max y,z

y∼j=z∼j
|π(xi = ·)− π(xi = ·)|TV = 0

for all i, j.
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3 Spectral Gap Theorem [Hayes ’05 and Wu ’06]

Theorem 1. Let P be the Gibbs sampler for π, and R is the corresponding Dobrushin Influence Matrix,
then 1− λ2(P ) ≥ 1−|R|op

n
, where |R|op =largest singular value of R = max|w|2≤1 |Rw|2.

Corollary 1 (Ising model). The probability measure π(x) = 1
z
exp(1

2
⟨x, Jx⟩), x ∈ {±1}n. As E[xi|x∼i] =

tanh(J∼ix∼i), we have

Rij =
1

2
max

y∼j=z∼j

| tanh(Ji,∼iy∼i)− tanh(Ji,∼iz∼i)|

≤ 1

2
max

y∼j=z∼j

|⟨Ji,∼i , y∼i − z∼i⟩|

=
1

2
max
yj=zj

|Jij||yj − zj|

= |Jij|.
Then

1− λ2(P ) ⩾
1−

∣∣∣(|Jij|)ij∣∣∣
op

n
.

If we require Jij ⩾ 0, we will have

1− λ2(P ) ⩾
1− |J |op

n
.

Proof. (of Corollary 1) We know that Rij ≥ 0 always. For the case Jij ≥ 0, both R and J have a unique
maximal eigenvalue with eigenvector that has all positive entries according to Perron-Frobenius theorem.
Therefore,

|R|op = max
|u|2=1

ui≥0, ∀i

|Ru|2 ≤ max
|u|2=1

ui≥0, ∀i

|Ju|2 = |J |op.

Example 1. In Ising model, let J = βA, where β ≥ 0 is the ”inverse temperature” and A is the adjacency
matrix of G. Let d = max degree of graph G = maxi

∑
j Aij. Then |J |op = β|A|op ≤ βd. By Corollary 1,

we have

1− λ2(P ) ≥ 1− βd

n
.

Remark 4. Previously if P ̸= NP then there’s no polytime algorithm to compute z =
∑

x e
β⟨x,Ax⟩

2 even
when βd < 1

100
. This is called ”exact counting” and it’s generally impossible. However, ∀ϵ > 0, computing

(1± ϵ)z in poly
(
n, 1

c

)
time is feasible for βd < 0.99. This is called ”approximate counting”.

Definition 1 (Marton’s Wasserstein distance). The Marton’s Wasserstein distance is defined asW 2(λ, τ) =
infρ(y,z)

∑n
i=1 ρ

2(yi ̸= zi), where the infimum ranges over all couplings ρ of λ and τ , i.e. joint distributions

ρ(y, z) with marginals ρ|y = λ and ρ|z = τ . And note W (λ, τ) =
√
W 2(λ, τ).

Remark 5. For y, z that have same marginal distribution λ, we have W 2(λ, λ) = 0.

Lemma 1. Under setting of Theorem 1, we have W (λP, τP ) ≤
(
1− 1−|R|op

n

)
W (λ.τ), for all probability

measures λ, τ .

Proof. (of Lemma 1)

Step 1. Construct coupling:

(1) Let ρ be the minimizer of W (λ, τ);
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(2) Sample (y,z) ∼ ρ;

(3) Pick i ∼ Unif([n]) (due to procedures in Gibbs sampler P );

(4) Sample u ∼ Unif[0, 1];

(5) Let y′i =

{
1 if u < π (xi = 1 | x∼i = y∼i)

−1 o.w.
, z′i =

{
1 if u < π (x = 1 | x∼i = z∼i)

−1 o.w.
,

y′∼i = y∼i, and z′∼i = z∼i;

(6) Let ρ′ be the joint law of (y′, z′).

Step 2. Prove that ρ′ (y′i ̸= z′1) ⩽
n−1
n
ρ (yi ̸= zi) +

1
n

∑
j ̸=iRijρ (yj ̸= zj), where ρ

′ is constructed from
Step 1.

ρ′ (y′i ̸= z′i) =
n− 1

n
ρ (yi ̸= zi) [don’t update i]

+
1

n
Eρ|π(xi = · | x∼i = y∼i)− π(xi = · | x∼i = z∼i)|TV [do update i]

Notice that the second term satisfies

|π(xi = · | x∼i = y∼i)− π(xi = · | x∼i = z∼i)|TV

⩽
n∑

j ̸=i

|π (xi = · | x<j = y<j, x>j = z>j, skip i)− π(xi = · | x⩽j = y⩽j, x>j = z>j, skip i)|

⩽
n∑

j ̸=i

Rij1 (yj ̸= zj) .

By pluging in back, we derive that

ρ′ (y′i ̸= z′1) ≤
n− 1

n
ρ (yi ̸= zi) +

1

n

n∑
j ̸=i

RijEρ1 (yj ̸= zj)

≤ n− 1

n
ρ (yi ̸= zi) +

1

n

∑
j ̸=i

Rijρ (yj ̸= zj) .

Step 3. Let r′i = ρ′ (y′i ̸= z′i) , ri = ρ (yi ̸= zi) , then r′i =
n−1
n
ri +

1
n
(Rr)i and as a vector

|r′|2 =
∣∣∣∣n− 1

n
r +

1

n
Rr

∣∣∣∣
2

=

∣∣∣∣(n− 1

n
I +

1

n
R

)
r

∣∣∣∣
2

⩽

∣∣∣∣n− 1

n
I +

1

n
R

∣∣∣∣
op

|r|2

⩽

(
n− 1

n
+

|R|op
n

)
|r|2.

That is, W (λP, τP ) ⩽
(

n−1
n

+ |R|op
n

)
W (λ, τ).
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Proof. (of Theorem 1) Lemma 1 implies some claims for dχ2 , let f2 = 2nd largest eigenvector of P , then
we want to show ∣∣(λ− τ)P tf2

∣∣ = (maxi ̸=1 |λi|)t |(λ− τ)f2|
boring

≤ 2
√
nW (λ, τ)|f |∞

(
1− 1− |R|op

n

)t

.
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