Dobrushin's Condition

1 Review

1.1 What We're at

Let π be a probability measure and we want to sample from it. P is the transition matrix s.t. $\pi P=\pi$ and the process is reversible and ergodic. Now we know that:

- $d_{\chi^{2}}\left(\tau P^{t}, \pi\right) \leq\left(\max _{i}\left|\lambda_{i}\right|\right)^{t} d_{\chi^{2}}(\tau, \pi)$

We can always ensure that $\max _{i}\left|\lambda_{i}\right|=\lambda_{2}$ by letting $P^{\prime}=\frac{1}{2}(I+P)$.

- $\lambda_{2}(P)$ is the smallest λ_{2} s.t. $\operatorname{Var}_{\pi}(f) \leq \frac{1}{1-\lambda_{2}}\langle f,(I-P) f\rangle_{\pi}$.

Here're some examples:

- SRW on s-cycle: $1-\lambda_{2}=\mathcal{O}\left(\frac{1}{s^{2}}\right)$
- Gibbs sampler on a prob measure $\pi=\pi_{1} \otimes \cdots \otimes \pi_{n}$ measure on $\mathcal{E}_{1} \otimes \cdots \otimes \mathcal{E}_{n}$: e.g. $\{ \pm 1\}^{n}$

By Efron-Stein's formula, we know that $\lambda_{2}=\frac{n-1}{n}=1-\frac{1}{n}=1-\frac{1}{\log _{2} s}$, where $s=\#$ states $=2^{n}$. Then $1-\lambda_{2}=\frac{1}{\log _{2} s}$.

1.2 What's Next

- Gibbs Sampler under weak dependence: "Dobrushin's condition"

2 Dobrushin Influence Matrix

Let $\pi\left(x_{1}, \ldots, x_{n}\right)$ be a prob measure on $\bigotimes_{i=1}^{n} \mathcal{E}_{i}$, where $x_{i} \in \mathcal{E}_{i}$. Define the Dobrushin Influence Matrix be $R \in \mathbb{R}^{n \times n}$, where

$$
R_{i j}=\max _{\substack{y, z \\ y \sim j=z \sim j}}\left|\pi\left(x_{i}=\cdot \mid x_{\sim i}=y_{\sim i}\right)-\pi\left(x_{i}=\cdot \mid x_{\sim i}=z_{\sim i}\right)\right|_{\mathrm{TV}}
$$

Remark 1. $|\cdot|_{\mathrm{TV}}$ stands for the Total Variation distance where $|p-q|_{\mathrm{TV}}=d_{\mathrm{TV}}(p, q)=\frac{1}{2} \sum_{x}|p(x)-q(x)|$ for all probability measure p, q.

Remark 2. $\forall i, R_{i i}=0$.
Remark 3. If π is a product measure, that is, all elements are independent, then $R=0^{n \times n}$. That's because $R_{i j}=\max _{\substack{y, z \\ y \sim j=z \sim j}}\left|\pi\left(x_{i}=\cdot \mid x_{\sim i}=y_{\sim i}\right)-\pi\left(x_{i}=\cdot \mid x_{\sim i}=z_{\sim i}\right)\right|_{\mathrm{TV}}=\max _{\substack{y, z \\ y \sim j=z_{\sim j}}}\left|\pi\left(x_{i}=\cdot\right)-\pi\left(x_{i}=\cdot\right)\right|_{\mathrm{TV}}=0$ for all i, j.

3 Spectral Gap Theorem [Hayes '05 and Wu '06]

Theorem 1. Let P be the Gibbs sampler for π, and R is the corresponding Dobrushin Influence Matrix, then $1-\lambda_{2}(P) \geq \frac{1-|R|_{o p}}{n}$, where $|R|_{o p}=$ largest singular value of $R=\max _{|w|_{2} \leq 1}|R w|_{2}$.
Corollary 1 (Ising model). The probability measure $\pi(x)=\frac{1}{z} \exp \left(\frac{1}{2}\langle x, J x\rangle\right), x \in\{ \pm 1\}^{n}$. As $\mathbb{E}\left[x_{i} \mid x_{\sim i}\right]=$ $\tanh \left(J_{\sim i} x_{\sim i}\right)$, we have

$$
\begin{aligned}
R_{i j} & =\frac{1}{2} \max _{y_{\sim j}=z_{\sim j}}\left|\tanh \left(J_{i, \sim i} y_{\sim i}\right)-\tanh \left(J_{i, \sim i} z_{\sim i}\right)\right| \\
& \leq \frac{1}{2} \max _{y_{\sim j}=z_{\sim j}}\left|\left\langle J_{i, \sim i}, y_{\sim i}-z_{\sim i}\right\rangle\right| \\
& =\frac{1}{2} \max _{y_{j}=z_{j}}\left|J_{i j}\right|\left|y_{j}-z_{j}\right| \\
& =\left|J_{i j}\right| .
\end{aligned}
$$

Then

$$
1-\lambda_{2}(P) \geqslant \frac{1-\left|\left(\left|J_{i j}\right|\right)_{i j}\right|_{o p}}{n}
$$

If we require $J_{i j} \geqslant 0$, we will have

$$
1-\lambda_{2}(P) \geqslant \frac{1-|J|_{o p}}{n}
$$

Proof. (of Corollary (1) We know that $R_{i j} \geq 0$ always. For the case $J_{i j} \geq 0$, both R and J have a unique maximal eigenvalue with eigenvector that has all positive entries according to Perron-Frobenius theorem. Therefore,

$$
|R|_{o p}=\max _{\substack{|u|_{2}=1 \\ u_{i} \geq 0, \forall i}}|R u|_{2} \leq \max _{\substack{|u|_{2}=1 \\ u_{i} \geq 0, \forall i}}|J u|_{2}=|J|_{o p}
$$

Example 1. In Ising model, let $J=\beta A$, where $\beta \geq 0$ is the "inverse temperature" and A is the adjacency matrix of G. Let $d=\max$ degree of graph $G=\max _{i} \sum_{j} A_{i j}$. Then $|J|_{o p}=\beta|A|_{o p} \leq \beta d$. By Corollary 1. we have

$$
1-\lambda_{2}(P) \geq 1-\frac{\beta d}{n}
$$

Remark 4. Previously if $P \neq N P$ then there's no polytime algorithm to compute $z=\sum_{x} e^{\frac{\beta\langle x, A x\rangle}{2}}$ even when $\beta d<\frac{1}{100}$. This is called "exact counting" and it's generally impossible. However, $\forall \epsilon>0$, computing $(1 \pm \epsilon) z$ in poly $\left(n, \frac{1}{c}\right)$ time is feasible for $\beta d<0.99$. This is called "approximate counting".

Definition 1 (Marton's Wasserstein distance). The Marton's Wasserstein distance is defined as $W^{2}(\lambda, \tau)=$ $\inf _{\rho(y, z)} \sum_{i=1}^{n} \rho^{2}\left(y_{i} \neq z_{i}\right)$, where the infimum ranges over all couplings ρ of λ and τ, i.e. joint distributions $\rho(y, z)$ with marginals $\left.\rho\right|_{y}=\lambda$ and $\left.\rho\right|_{z}=\tau$. And note $W(\lambda, \tau)=\sqrt{W^{2}(\lambda, \tau)}$.

Remark 5. For y, z that have same marginal distribution λ, we have $W^{2}(\lambda, \lambda)=0$.
Lemma 1. Under setting of Theorem 1, we have $W(\lambda P, \tau P) \leq\left(1-\frac{1-|R|_{o p}}{n}\right) W(\lambda . \tau)$, for all probability measures λ, τ.

Proof. (of Lemma 1)
Step 1. Construct coupling:
(1) Let ρ be the minimizer of $W(\lambda, \tau)$;
(2) Sample (y,z) $\sim \rho$;
(3) Pick $i \sim \operatorname{Unif}([n])$ (due to procedures in Gibbs sampler P);
(4) Sample $u \sim \operatorname{Unif}[0,1]$;
(5) Let $y_{i}^{\prime}=\left\{\begin{array}{ll}1 & \text { if } u<\pi\left(x_{i}=1 \mid x_{\sim i}=y_{\sim i}\right) \\ -1 & \text { o.w. }\end{array}, z_{i}^{\prime}=\left\{\begin{array}{ll}1 & \text { if } u<\pi\left(x=1 \mid x_{\sim i}=z_{\sim i}\right) \\ -1 & \text { o.w. }\end{array}\right.\right.$, $y_{\sim i}^{\prime}=y_{\sim i}$, and $z_{\sim i}^{\prime}=z_{\sim i} ;$
(6) Let ρ^{\prime} be the joint law of $\left(y^{\prime}, z^{\prime}\right)$.

Step 2. Prove that $\rho^{\prime}\left(y_{i}^{\prime} \neq z_{1}^{\prime}\right) \leqslant \frac{n-1}{n} \rho\left(y_{i} \neq z_{i}\right)+\frac{1}{n} \sum_{j \neq i} R_{i j} \rho\left(y_{j} \neq z_{j}\right)$, where ρ^{\prime} is constructed from Step 1.

$$
\begin{aligned}
\rho^{\prime}\left(y_{i}^{\prime} \neq z_{i}^{\prime}\right) & \left.=\frac{n-1}{n} \rho\left(y_{i} \neq z_{i}\right) \quad \text { [don't update } i\right] \\
& \left.+\frac{1}{n} \mathbb{E}_{\rho}\left|\pi\left(x_{i}=\cdot \mid x_{\sim i}=y_{\sim i}\right)-\pi\left(x_{i}=\cdot \mid x_{\sim i}=z_{\sim i}\right)\right|_{\mathrm{TV}} \quad \text { [do update } i\right]
\end{aligned}
$$

Notice that the second term satisfies

$$
\begin{aligned}
& \left|\pi\left(x_{i}=\cdot \mid x_{\sim i}=y_{\sim i}\right)-\pi\left(x_{i}=\cdot \mid x_{\sim i}=z_{\sim i}\right)\right|_{\mathrm{TV}} \\
\leqslant & \sum_{j \neq i}^{n} \mid \pi\left(x_{i}=\cdot \mid x_{<j}=y_{<j}, x_{>j}=z_{>j}, \text { skip } i\right)-\pi\left(x_{i}=\cdot \mid x_{\leqslant j}=y_{\leqslant j}, x_{>j}=z_{>j}, \text { skip } i\right) \mid \\
\leqslant & \sum_{j \neq i}^{n} R_{i j} \mathbb{1}\left(y_{j} \neq z_{j}\right) .
\end{aligned}
$$

By pluging in back, we derive that

$$
\begin{aligned}
\rho^{\prime}\left(y_{i}^{\prime} \neq z_{1}^{\prime}\right) & \leq \frac{n-1}{n} \rho\left(y_{i} \neq z_{i}\right)+\frac{1}{n} \sum_{j \neq i}^{n} R_{i j} \mathbb{E}_{\rho} \mathbb{1}\left(y_{j} \neq z_{j}\right) \\
& \leq \frac{n-1}{n} \rho\left(y_{i} \neq z_{i}\right)+\frac{1}{n} \sum_{j \neq i} R_{i j} \rho\left(y_{j} \neq z_{j}\right) .
\end{aligned}
$$

Step 3. Let $r_{i}^{\prime}=\rho^{\prime}\left(y_{i}^{\prime} \neq z_{i}^{\prime}\right), r_{i}=\rho\left(y_{i} \neq z_{i}\right)$, then $r_{i}^{\prime}=\frac{n-1}{n} r_{i}+\frac{1}{n}(R r)_{i}$ and as a vector

$$
\begin{aligned}
\left|r^{\prime}\right|_{2} & =\left|\frac{n-1}{n} r+\frac{1}{n} R r\right|_{2} \\
& =\left|\left(\frac{n-1}{n} I+\frac{1}{n} R\right) r\right|_{2} \\
& \leqslant\left|\frac{n-1}{n} I+\frac{1}{n} R\right|_{\mathrm{op}}|r|_{2} \\
& \leqslant\left(\frac{n-1}{n}+\frac{|R|_{\mathrm{op}}}{n}\right)|r|_{2} .
\end{aligned}
$$

That is, $W(\lambda P, \tau P) \leqslant\left(\frac{n-1}{n}+\frac{|R|_{o p}}{n}\right) W(\lambda, \tau)$.

Proof. (of Theorem 11) Lemma 1 implies some claims for $d_{\chi^{2}}$, let $f_{2}=2^{\text {nd }}$ largest eigenvector of P, then we want to show

$$
\begin{aligned}
\left|(\lambda-\tau) P^{t} f_{2}\right| & =\left(\max _{i \neq 1}\left|\lambda_{i}\right|\right)^{t}\left|(\lambda-\tau) f_{2}\right| \\
& \quad \text { boring } 2 \sqrt{n} W(\lambda, \tau)|f|_{\infty}\left(1-\frac{1-|R|_{o p}}{n}\right)^{t}
\end{aligned}
$$

