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1 Introduction to the Course

At a high level, we wish to understand techniques for analyzing a random optimization problem of
the form

min F'(z),

where F'(z) and possibly X depends on a random structure (such as a random matrix or random
graph). Note in particular that this is not a course on the similar-sounding topic of stochastic
optimization: we will not be studying techniques like Stochastic Gradient Descent.

1.1 Administrative

The course will consist of ~ 2 homeworks, a course project, and scribing one lecture. Each will be
weighted approximately evenly.

2 Four Illustrative Examples

2.1 Gaussian Orthogonal Ensemble (GOE)

Consider a matrix of the form:

GZ]NN(O,l/n), Gij:Gjia i,jzl,...,n.
A central question we can ask: what is the typical value of the largest eigenvalue of G? Formally, we
wish to solve

E | max (z, Gx)

llzll,=1

This is a classic problem in random matrix theory with the well known result that as n — oo, the
largest eigenvalues tends towards 2.

2.2 Spin Glasses

Consider the related optimization of (x, Gz) over the vertices of the unit hypercube:

max (z,Gz).
ze{xl1}"
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As this is a special case of the first example, we know that it’s value is at most 2. To fully solve this,
techniques arising from the study of Spin Glasses are used. See “Sherrington-Kirkpatrick model”.

2.3 Sparse Recovery Problem
Suppose X € R™? is a random (not necessarily symmetric) matrix with X;; ~ A(0,1). Let

Y=XB+E €~ N(0,0%),

where [ is unknown but sparse (i.e. only k£ < p entries are nonzero). The problem at hand: given X
and Y, can we recover 57 We can formulate a related optimization problem:

min ||y — X5 + A B}
BERP

This least-squares regression with a sparsity constraint penalty is a random convex optimization
problem. We can ask what the expected value of [ly — X 3|3 + A||]]; is, or how the solution to the
above problem (* relates to the true .

2.4 The Largest Clique Problem

Let A € R™" be the adjacency matrix of a random n x n graph G(n,1/2). That is, A;; ~
Bernoulli(1/2), A;; = 1. Consider the problem:

E [max{|S|: S C [n] s.t. Ags = Lgxs]

i.e., what is the largest clique (the largest subset of vertices in the graph which is fully connected)?
As an example, consider
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Here, the cliques are S = {1,2,3} and S = {2, 3,4}, so the solution is 3. For Erdés—Rényi graphs
G(n,1/2), it is known that the largest clique is ~ 2log, n.

We can also ask an algorithmic question: can we find the maximum clique in polynomial time?
This is a fundamental open problem in average-case complexity.

3 Related Application: Wireless Communication

For some motivation, we will briefly mention a somewhat related application in the area of informa-
tion and coding theory which is actually practically relevant. In wireless communication, signals are
transmitted across noisy channels. so how do we send signals with noise corruption? Formally, given
a message {£1}" how do we encode the message to {#1}" where N > n so that the larger message
is robust to corruption?

A basic noise model is the binary symmetric channel (BSC) where each transmitted bit is flipped
independently with probability p. One solution is the Low-Density Parity-Check (LDPC) codes,


https://en.wikipedia.org/wiki/Spin_glass
https://en.wikipedia.org/wiki/Low-density_parity-check_code

proposed by Robert Gallager in his 1960 thesis. [Note here that we are using BSC as a simplified
model, it is not the actual noise model in real life. It is a simple setting to illustrate LDPC codes,
which are in fact used in 5G networks and other important real-world applications].

A rough overview goes, suppose we have a message vector

x € {0,1}".
To transmit reliably over a noisy channel, we extend x into a longer codeword
c=(z,2) € {0,1}",
where z is a vector of parity bits chosen so that
He=0 (mod 2),

for some sparse parity-check matrix H € {0,1}*¥. Thus, the codeword (z, z) lies in the nullspace
of H. This redundancy allows the receiver to detect and correct errors. The codeword ¢ = (z, z) is
sent through the Binary Symmetric Channel with crossover probability p. The receiver observes

y=cae,

" is the noise vector. The decoding problem can be formulated as an opti-

where e ~ Bernoulli(p)
mization problem:

~ . /
¢ = argmind c
gc’EC H(ya )7

where C = {c € {0,1}" : Hc = 0} is the LDPC code, and dy(y,c) = |y — ||o is the Hamming
distance. The exact minimization is not believed to be algorithmically tractable, so LDPC codes use
an iterative belief propagation (BP) decoder.
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