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Lecture Nov 4: Linear Regression and Gordon’s Theorem

Linear Regression Model

We consider the linear regression model
Y = Xw⋆ + ξ,

where

• Y ∈ Rn is the response vector,

• X ∈ Rn×p is the design matrix,

• w⋆ ∈ Rp is the unknown parameter vector,

• ξ ∼ N (0, δ2In) is Gaussian noise.

Ordinary Least Squares (OLS)

The ordinary least–squares estimator solves

ŵ = arg min
w∈Rp

∥Y −Xw∥22.

When X⊤X is invertible, the solution has the closed form

ŵOLS = (X⊤X)−1X⊤Y.

Random Design Assumption

Assume the rows of X are i.i.d. Gaussian:

X =

X
⊤
1
...
X⊤

n

 , Xi
i.i.d.∼ N (0, Ip).

We are interested in the estimation error
∥ŵ − w⋆∥22.
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“Easy” Case: Fixed p, n→ ∞
Classical asymptotic statistics gives

1

n
X⊤X

a.s.−−→ Ip as n→ ∞.

In this regime,
∥ŵ − w⋆∥22 → 0,

and more precisely the error is of order

∥ŵ − w⋆∥22 ≍ δ2
p

n
.

High-Dimensional Regime

The more interesting case is when both p and n grow:

p, n→ ∞,
p

n
→ γ ∈ (0, 1).

In this high-dimensional limit, one can show (under the Gaussian design)

∥ŵ − w⋆∥22 ≈
δ2γ

1− γ
.

As γ ↑ 1, the factor γ
1−γ

diverges, so any fixed noise level δ2 > 0 leads to exploding estimation error.

Why Recovery Fails When γ > 1

Consider the noiseless case δ = 0:
Y = Xw∗.

When γ = p/n > 1, the linear system above is underdetermined. For typical Gaussian X we have

dim(kerX) = p− rank(X) ≈ (γ − 1)n,

Since γ = p/n, we can rewrite
p = nγ = n+ (γ − 1)n,

so there are n directions determined by the rows of X and roughly (γ − 1)n additional directions lying in
ker(X). so all solutions lie in a large affine space

{w : Xw = Y } = w0 + ker(X).

Put a Gaussian prior w∗ ∼ N (0, τ 2Ip). Given (X,Y ) with δ = 0, the posterior distribution p(w | X, Y ) is
simply this Gaussian prior restricted to w0 + ker(X). In the directions inside kerX the data provide no
information, so the posterior variance in those directions remains of order τ 2. Thus the Bayes risk goes to
infinity as the prior variance τ 2 → ∞.
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Figure 1: The line represents all solutions of Xw = Y , and the posterior mass (dots) is spread along this
line

Expected Minimal Training Error

We also study the minimal empirical loss:

min
w

1

n
∥Y −Xw∥22.

Theorem. Under the model Y = Xw⋆ + ξ with ξ ∼ N (0, δ2In) and Gaussian design as above,

E

[
min
w

1

n
∥Y −Xw∥22

]
= δ2

(
1− p

n

)
.

In particular, when p = n the expected minimal training error is 0. This corresponds to the interpolation
regime where there exists an estimator ŵ such that Y = Xŵ exactly.

Idea of the proof (geometric). Let ŵOLS be an OLS solution. Then we can decompose

Y = XŵOLS + r,

where XŵOLS is the orthogonal projection of Y onto the subspace span(X), and r is the residual in the
orthogonal complement span(X)⊥. For a Gaussian design, this residual has distribution

r ∼ N (0, δ2Pspan(X)⊥),

so E∥r∥22 = δ2(n− p). Dividing by n gives the formula above.

Preliminaries: Gaussian Comparison

We recall a basic Gaussian comparison principle. Let X = (Xa)a∈I and Y = (Ya)a∈I be two centered
Gaussian processes. If their increments satisfy

Var(Xa −Xb) ≤ Var(Ya − Yb), ∀a, b ∈ I,
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then
Emax

a∈I
Xa ≤ Emax

a∈I
Ya.

This kind of comparison will be strengthened by Slepian and Gordon’s theorems.

Slepian’s Theorem

Let X = (Xa)a∈I and Y = (Ya)a∈I be two mean-zero Gaussian processes such that

1. EX2
a = EY 2

a for all a ∈ I;

2. Var(Xa −Xb) ≤ Var(Ya − Yb) for all a, b ∈ I.

Then for all real z,

P
(
max
a∈I

Xa ≥ z
)
≤ P

(
max
a∈I

Ya ≥ z
)
.

Integrating this inequality over z yields

Emax
a∈I

Xa ≤ Emax
a∈I

Ya.

Gordon’s Theorem (Generalized Slepian)

Let X = (Xij)i∈I, j∈J and Y = (Yij)i∈I, j∈J be two mean-zero Gaussian processes. Assume:

1. For all (i, j), EX2
ij = EY 2

ij ;

2. For all i ∈ I and j, k ∈ J ,
Var(Xij −Xik) ≤ Var(Yij − Yik);

3. For all i ̸= e and j, k ∈ J ,
Var(Xij −Xek) ≥ Var(Yij − Yek).

Then, for any array of thresholds (λij)i∈I, j∈J ,

P
(
∀i ∈ I, ∃j ∈ J s.t. Xij ≥ λij

)
≤ P

(
∀i ∈ I, ∃j ∈ J s.t. Yij ≥ λij

)
.

If I = {1}, the statement reduces to Slepian’s theorem.

Gaussian Min–Max Corollary

Let A ∈ Rm×n be a random matrix with i.i.d. entries Aij ∼ N (0, 1). Let

g̃ ∼ N (0, 1), g ∼ N (0, Im), h ∼ N (0, In),

all independent. Consider index sets X ⊂ Rn, Y ⊂ Rm, and a deterministic function ψ : X × Y → R.
Define two Gaussian processes indexed by (x, y) ∈ X × Y :

Bx,y = ⟨y,Ax⟩+ g̃ ∥x∥ ∥y∥,

Dx,y = ∥x∥⟨g, y⟩+ ∥y∥⟨h, x⟩.

Gordon’s theorem implies a comparison between the probabilities of min–max events:

P
(
min
x∈X

max
y∈Y

{Dx,y + ψ(x, y)} ≥ c
)

≤ P
(
min
x∈X

max
y∈Y

{Bx,y + ψ(x, y)} ≥ c
)

for any c ∈ R. Often the (auxiliary) process Dx,y is simpler to analyze, and this inequality allows us to
control properties of the (primary) optimization involving Bx,y.
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Lecture Nov 6: From Gordon to the Min–Max Inequality

Checking Gordon’s Conditions

Sketch why the specific choices of Bx,y and Dx,y satisfy Gordon’s assumptions.

Matching variances. One can compute

E⟨y,Ax⟩2 = ∥x∥2∥y∥2, E(g̃ ∥x∥ ∥y∥)2 = ∥x∥2∥y∥2,

and these terms are independent, hence

EB2
x,y = 2∥x∥2∥y∥2.

A similar computation for Dx,y using independence of g and h shows

ED2
x,y = 2∥x∥2∥y∥2.

Therefore, EB2
x,y = ED2

x,y.

Covariance comparison (idea). For (x, y) and (x′, y′), one computes

E[Bx,yBx′,y′ ] = ⟨x, x′⟩⟨y, y′⟩+ ∥x∥∥x′∥∥y∥∥y′∥,

and
E[Dx,yDx′,y′ ] = ∥x∥∥x′∥⟨y, y′⟩+ ∥y∥∥y′∥⟨x, x′⟩.

Subtracting gives

E[Dx,yDx′,y′ −Bx,yBx′,y′ ] = −
(
∥x∥∥x′∥ − ⟨x, x′⟩

)(
∥y∥∥y′∥ − ⟨y, y′⟩

)
.

By choosing (x, y) and (x′, y′) to correspond to the different index pairs in Gordon’s theorem (“same row,
different column” vs. “different row”), this sign structure yields the required inequalities on the variances
of increments.

From a Min–Max to a Gordon Event

Consider the random quantity
ΦB = min

x∈X
max
y∈Y

{Bx,y + ψ(x, y)}.

The event {ΦB ≥ c} can be rewritten as

{∀x ∈ X, ∃y ∈ Y such that Bx,y ≥ c− ψ(x, y)}.

This has exactly the form of the event in Gordon’s theorem with thresholds λx,y = c− ψ(x, y). Applying
the comparison inequality to Bx,y and Dx,y gives the Gaussian min–max inequality stated above.

These Gaussian comparison tools, together with the random matrix structure of X, underlie precise
high-dimensional characterizations of the error of OLS and related estimators in linear regression.
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