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Linear Regression and Gordon’s Theorem

Summary Notes (from Nov 4 Lectures)

Lecture Nov 4: Linear Regression and Gordon’s Theorem

Linear Regression Model

We consider the linear regression model
Y = Xw* +¢,

where
e Y € R" is the response vector,
e X € R™P is the design matrix,
e w* € RP is the unknown parameter vector,

o &~ N(0,6%I,) is Gaussian noise.

Ordinary Least Squares (OLS)

The ordinary least—squares estimator solves

W= argur]rég}) 1Y — Xwl3.

When X "X is invertible, the solution has the closed form

oLs = (XTX) ' XTY.

Random Design Assumption
Assume the rows of X are i.i.d. Gaussian:
X
X=|:1, X< NOIL).

We are interested in the estimation error
- * |12
[ — w*]|5.



“Easy” Case: Fixed p, n — o0

Classical asymptotic statistics gives
1 T a.s.
-X X —1, asn — oo.
n

In this regime,
[l — w3 — 0,

and more precisely the error is of order
W — w2 = 52
i — w3 = 2L
High-Dimensional Regime
The more interesting case is when both p and n grow:
P
p,n — 00, — =€ (0,1).
n

In this high-dimensional limit, one can show (under the Gaussian design)

5%y
1—7v

~ 2 ~

[ —w*l; ~

As v 11, the factor ;2= diverges, so any fixed noise level 6% > 0 leads to exploding estimation error.
gl

Why Recovery Fails When v > 1

Consider the noiseless case § = 0:
Y = Xw*.

When v = p/n > 1, the linear system above is underdetermined. For typical Gaussian X we have
dim(ker X) = p — rank(X) =~ (v — 1)n,

Since 7 = p/n, we can rewrite
p=ny=n+(y—1n,

so there are n directions determined by the rows of X and roughly (v — 1)n additional directions lying in

ker(X). so all solutions lie in a large affine space

{w: Xw =Y} = wy+ ker(X).

Put a Gaussian prior w* ~ N(0,7%,). Given (X,Y’) with § = 0, the posterior distribution p(w | X,Y) is
simply this Gaussian prior restricted to wgy + ker(X). In the directions inside ker X the data provide no
information, so the posterior variance in those directions remains of order 72. Thus the Bayes risk goes to

infinity as the prior variance 7% — 0.
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Figure 1: The line represents all solutions of Xw =Y, and the posterior mass (dots) is spread along this
line

Expected Minimal Training Error

We also study the minimal empirical loss:

1
min —||Y — Xwl|3.
won
Theorem. Under the model Y = Xw* + £ with £ ~ N(0,21,,) and Gaussian design as above,

E

1
min — ||y — Xng] - 52(1 - 3).
w N n

In particular, when p = n the expected minimal training error is 0. This corresponds to the interpolation
regime where there exists an estimator w such that Y = Xw exactly.
Idea of the proof (geometric). Let wors be an OLS solution. Then we can decompose
Y = Xwors + 1,

where Xworg is the orthogonal projection of Y onto the subspace span(X), and r is the residual in the
orthogonal complement span(X ). For a Gaussian design, this residual has distribution

r o~ N(O, 52Pspan(X)i)a

so E||r||3 = 6%(n — p). Dividing by n gives the formula above.

Preliminaries: Gaussian Comparison

We recall a basic Gaussian comparison principle. Let X = (X, )ser and Y = (Y, )ser be two centered
Gaussian processes. If their increments satisfy

Var(X, — Xp) < Var(Y, — V), Va,be I,
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then

Emax X, < EmaxY,.
acl acl

This kind of comparison will be strengthened by Slepian and Gordon’s theorems.

Slepian’s Theorem
Let X = (X4)aer and Y = (Y,)4er be two mean-zero Gaussian processes such that
1. EX2 =FEY? for all a € T;
2. Var(X, — X;) < Var(Y, —Y;) for all a,b € I.
Then for all real z,
P(maxXa > z> < P(maXYa > z).
acl acl

Integrating this inequality over z yields

Emax X, < EmaxY,.
acl acl

Gordon’s Theorem (Generalized Slepian)
Let X = (Xyj)ier jes and Y = (Yi;)ier, jes be two mean-zero Gaussian processes. Assume:
1. For all (i, 7), IEX% = EYZ?,
2. Forall7: eI and j,k € J,
Var(X;; — X)) < Var(Yi; — Yip);

3. For all i # e and j, k € J,
Var(Xij — Xek) > Var(Yij — Y;;Q

Then, for any array of thresholds (\;;)ier, jes,
IP’(W eI, 3 e st Xy> Aij> < IP’(W €1, 3 e st Yy, > AU).

If I = {1}, the statement reduces to Slepian’s theorem.

Gaussian Min—Max Corollary
Let A € R™" be a random matrix with i.i.d. entries A;; ~ N(0,1). Let
gNN(Ovl)v gNN(07]m>7 hNN<O=In)7

all independent. Consider index sets X C R", Y C R™, and a deterministic function ¢ : X x Y — R.
Define two Gaussian processes indexed by (z,y) € X x Y=

Dy = [|z]/{g. y) + [[yll(h, 2).

Gordon’s theorem implies a comparison between the probabilities of min—max events:

P(min max{D,, + ¢Y(z,y)} > c) < ]P’(min ma};({Bxyy +Y(z,y)} > C)

zeX yeYy zeX ye

for any ¢ € R. Often the (auxiliary) process D, , is simpler to analyze, and this inequality allows us to
control properties of the (primary) optimization involving B, ,,.
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Lecture Nov 6: From Gordon to the Min—Max Inequality

Checking Gordon’s Conditions

Sketch why the specific choices of B, , and D, , satisfy Gordon’s assumptions.

Matching variances. One can compute
E(y, Ax)® = [l2|*llyll*,  E@ ] lyl)* = l=l*lyl?*,
and these terms are independent, hence
EB;, = 2|l=|”[lyl*.
A similar computation for D, , using independence of g and h shows
ED;, = 2[|lyl*.

Therefore, EB = ED2 .

Covariance comparison (idea). For (z,y) and (2/,y'), one computes

E[B.yBuy] = (.2 )y, y/') + llzl[ 12" ly[l1ly]],

and
E[DyyDar ] = 2" [{y, 4" + [lylllly || (z, 27).

Subtracting gives

E[Dzy Doy — BayBoy] = = (2lll|2’l| = (z,2")) (Iyllly'll = (v, )-

By choosing (x,y) and (2/,y') to correspond to the different index pairs in Gordon’s theorem (“same row,
different column” vs. “different row”), this sign structure yields the required inequalities on the variances
of increments.

From a Min—Max to a Gordon Event

Consider the random quantity

®p = minmax{B;,, +¢(z,y)}

The event {®p > ¢} can be rewritten as
{Vz € X, 3y € Y such that B,, > c—9¢(z,y)}.

This has exactly the form of the event in Gordon’s theorem with thresholds A, , = ¢ — ¢(z,y). Applying
the comparison inequality to B, , and D, , gives the Gaussian min-max inequality stated above.

These Gaussian comparison tools, together with the random matrix structure of X, underlie precise
high-dimensional characterizations of the error of OLS and related estimators in linear regression.



