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Gordon Theorem and its Applications

1 Gaussian min - max

Theorem 1 (Gaussian min - max). Let X,Y be sets, and let A € R™™ be a random matriz with i.i.d.
entries Ajj ~ N (0,1). Let g ~ N(0, L), h ~N(0,1,), and § ~ N(0,1) be mutually independent Gaussian
random variables.

Pr (g { (. A) + 1ol o]+ w00} = ) = Pr (migmax { (el (9 + o] () + 0(090)} 2 ). (1)

Remark 1. We refer to the left-hand side (LHS) of inequality (9) as the Primary Optimization (PO)
problem, and to the right-hand side (RHS) as the Auziliary Optimization (AQO) problem.

Definition 1. Define
Byy =y, Ar) + g |z| - |yl,  Duy =l2[{g,9) + |yl (h, 7). (2)

From above definition, we immediately have

E[B2,] = |« [y|* + |2|* |y|* = E[DZ,]. (3)
E[DyyDar ] = El(|2| (g, y) + [yl (h, 2)) (12" (g, ¥') + [¥'| (b, 2"))] = |2 |2 (y, o) + [yl [ (z, 7). (4)
E[ByyBa o] = E[((y, Az) + g || [y[)((y', A2") + g 2" [y'])] = (z, 2" )y, v') + || |2"| [y |y'] - (5)

Difference of correlations. By subtracting equation and , we immediately have the following
properties:

E[Dzy Doy — BryBuy| = —(|z] 2] = (&, 2)) (] ly'| = (v, 9), (6)

which is always non-positive. Hence,

E[B;yBs. — Dy yD, ] =0, E[ByyByy — Dy yDyr ] = 0. (7)

Reconstruction of Gordon’s Theorem. We can recover the Gordon’s conditions we assume during
the last lecture, rewritten in the language of B, , and D, ,:

E[B;,] = (|«*lyl* + ||* ly|*) = E[D},],
E[B:myBx,Z - Dz,ny,z] - 0, (8)
E[By, By — DuyDur ] = 0.

Accordingly, we can also rewrite the statement of Gordon’s Theorem as

Pr (min max { B, + ¢(z,y)} > c) =Pr(Vz,3y st. D,y > c—(x,y)), (9)

zeX yeY

where we denote A, = ¢ — ¢(z,y).



2 Application - Linear Regression

One consequence of Theorem [1]is the following (see [Zhou-Koehler-Sutherland-Srebro 24] for the proof):
Theorem 2. Let the data be generated as
Y = Xw* +¢, (10)

where each row of X € R™ 4 is drawn independently from N'(0, I;), and & ~ N(0,021,,) represents Gaussian
noise.
Suppose there exists a function F(w) such that for any w, with probability at least 1 — o(1),

(w—w*,z) < F(w). (11)
Then, with high probability,
1 F(w)\?

Remark 2. The inequality can be interpreted as relating three types of errors:
e 0%+ ||w— w*||* — the prediction error;
e |Y — Xw|/\/n— the training error;

e F(w)/\/n — the generalization error.

2.1 Ordinary Least Squares (OLS)
Recall that the OLS optimum is defined as
WoLs = arg min ||y — Xw||s. (13)
weR?

From previous lectures, we have the following facts:

o LY — Xiors|” =< 0?(1 - 2).

o (w—wtX)<|w—w |X|=|w—w|Vd

p

Here |-| denote the 2-norm, and we set y := £.

For the OLS estimation, the inequality becomes

O+l —wl < (oy/T=7+ 8- w']7)

We now regard inequality as a quadrature w.r.t. r := |@ — w*|. Expanding the RHS and simplifying

yields
r? =20, /75 T+ 0% <0, (15)

Optimal Distance. Given the model Y = Xw* 4 £, we may rewrite the residual for any candidate
parameter w as

2
s 2/13 = WOLS- (14)

Y — Xw=X(w"—w)+E, (16)

where w is our approximation and £ is the Gaussian noise. This decomposition provides the following
interpretation for a near-optimal choice of w:

e The first term X (w* — w) ensures that w does not stray too far from the true parameter w*.

e The Gaussian noise term & prevents w from being too close to w*. Indeed, in the special case w = w*,
the residual consists solely of noise, with 1 Y — X w|® < 02(1 — ), which is undesirable as well.
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3 CGMT

Theorem 3 (Von Neumann’s Min - Max (informal)). Let XY be convez sets, and let f(z,y) be convex
in x and concave in y. Then (under some additional assumptions)

i = i . 17
min max f(z,y) = maxmin f(z,y) (17)

Remark 3. This equality characterizes the equilibrium of a zero-sum game.

Example 1. For instance, if f(z,y) = (x, My), then the equality follows directly from linearity, which is
the saddle point of f.

Corollary 1 (Convex Gaussian Min-Max (Informal)). If X and Y are convex sets, and the function
W(x,y) is convex in x and concave in y, then

i PO A mi AO 18
i PO(e,0) = i s AO(z. ). -

where PO and AO denote the Primary and Auziliary Optimization problems, respectively.
The formal statement is in terms of tail probabilities as in the previous statement of GMT.

Remark 4. The direction
min max PO(z,y) > minmax AO(z,y) (19)
y

x y T

always holds, even for nonconvex settings.

A switching technique via convex - concave symmetry. For any function f(z,y) that is concave
in x and convex in y, we have

(=1) - minmax f(z,y) = maxmin(—f(z,y)), (20)

with —f being convex in x and concave in y. Moreover, by Von Neumann’s min-max theorem,

min max(— f(z,y)) = maxmin(—f(z,y)), (21)
T y y T
which implies
(1) minma £z ) = minmas(~f(x,y), (22
ie.
min max f(x,y) = maxmin f(z,y). (23)

Thus the convex-concave structure guarantees the interchangeability of the min and max operators, a
key ingredient in proving the reverse direction in Corollary (1| (see Thrampoulidis-Oymak-Hassibi '15).
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