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CGMT Applications, Motivating Example for Belief Propagation

1 CGMT applications

1.1 Re-deriving the classical asymptotic training error of OLS

Consider the linear model
Y = Xw" + &

where X € R™*? is a random matrix with i.i.d. A(0,1) entries and § ~ N(0, 0%1,,) is Gaussian noise. The
ordinary least squares (OLS) estimator is

oLs = argmin ||Y — Xw||3.
weRP

We work in the proportional asymptotics regime p,n — oo and v = p/n € (0,1). Recall from a previous
lecture the classical result for the training error

1 N
Y = Xous ~ 0% (1 - 7).

We can re-derive this result using the Convex Gaussian Min-Max Theorem (CGMT). For convenience, we
consider the equivalent optimization problem without the square:

min ||Y — Xw||y

weRP

which has the same optimizer Wors. Using the variational representation |[vs = maxjy,<1(v, A), we can
write this as a min-max problem:

min ||Y — Xw||2 = min max (Y — Xw, A\) = min max (X (w* —w) + &, \).
w W [[All2<1 W [[All2<1

Take this to be the primary optimization (PO) problem. By CGMT, with high probability we have
PO ~ AO,
where the associated auxiliary optimization problem is given by

AO = min max {(¢,\) + (g, \)[|w” —wll2 + (h,w" —w)[|All2}

wERP || A]|2<1

:gg& H{\Iﬁ?é{()\,gHw —wllz + &) + (W' —w, h)|[A]2},

with g ~ N(0,1,) and h ~ N(0, I,,) independent. Write A = tu where ¢ € [0,1] and |lul|2 = 1. Letting
r:= ||lw* — w||2, the inner maximization problem becomes

max max t({gr+ &, u) + (w* —w, h)).
jnax max ({gr + & u) + )

For a fixed t, the maximizer over u is given by the unit vector in the direction of gr+¢, so the maximization
becomes

max t(||gr + || + (w* — w, h)) =
te(0,1]

0 if [|gr 4 &ll2 + (w* —w, h) <0
lgr +&ll2 + (w* —w, h) if [[gr + |2 + (w* —w, h) > 0.
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Thus, we can rewrite AO as
AO = min max{0, [lgl|w” —wllz + [l + (0" —w, M},
Let us focus on the non-zero case
min {[|gljw” —wllz +€ll2 + (w” —w, )} = min {[lgr + &llz — r[[A]l2}

where we used the observation that the minimum occurs when we take w so that w* —w is in the negative
direction of h. We now invoke standard facts about high-dimensional Gaussian vectors to see that:

o [[hlla~ v/, llglla = v, €]l = ov/n

e ¢, ¢ are independently drawn Gaussian random vectors in R", so they are asymptotically orthogonal
as n — oo, i.e.

—\(g,fﬂ —0 asn — oo.
lgll211€]l2
Thus,
lgr +&l13 = r*llgll3 + 1€]13 + 2r (g, &) = r*n+ o’n,
SO

ffgigl{||gr+§l|2—r||h||2}zm;g{\/m_r\/ﬁ}'

Notice that in our regime where p/n = v < 1, vVr?n + o?n — r/p is always strictly positive, so this rules
out the case where \ = 0 is the optimizer for the inner maximization problem and we can safely write

AO = m>i61{Hg7" + &2 —rllh]l2} = min {\/7“2n +o%n — r\/]_)}
To find the minimizer of the problem on the right-hand side, we differentiate the objective:

d ™
ally B/ 25 — - -
dr{ r‘n +o°n r\/g_o} T N2

Setting to 0 gives the stationary point
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1
m>igl{\/r2n+02n—r\/]_7} :a\/ﬁ{ Ton ™ %ﬁ] =ovny/1—7.
> Vi—-y Vi1i-4
Therefore,

1 . 1 _ ?
LY = Xousl = (=Y = Xdusll ) ~ o (1)

which is exactly what we wanted to show.



1.2 Estimation error for OLS

Following a similar derivation, we can also find the asymptotic estimation error in the same regime. We
want to show that the estimation error ||WoLs — w” |2 satisfies ||wors — w*||2 & r, where r = o /72=. It is

equivalent to show that for any small € > 0, with high probability we have
[WoLs — w*||2 € [0,7 — €] U [r + €, 00).

Define the regions A = {w : |lw —w*|a < r—¢c}, B ={w :r—¢ < |lw—w*|a < r+ ¢}, and
C={w:||lw—w|y>r+ce}. It suffices to show that
min_||Y — Xwll; > min [|Y — Xwl|,.
weAUC weRP
Note that A U C' is not convex, so the left-hand side is not a convex optimization problem which we can
apply CGMT to. However, we only need a lower bound here, and the Gaussian Min-Max theorem (GMT)

guarantees PO > AO holds with high probability even if the domain is not convex. We can do a similar

analysis as above to write
min ||Y — Xwl|s

weAUC

as a min-max problem then use GMT and basic facts about high-dimensional Gaussian random vectors to
get
min_[|Y — Xwly > min {\/02n+f2n—f\/]5}.

weAUC 7>0, 7E[r—e,r+e]

Then the claim is proved once we note that

min {\/0271 + 72n — f\/ﬁ} > m>161 {\/rzn +o2n — r\/ﬁ} ~ m%} Y — Xwls.
r> we

7>0, 7E[r—e,r+e]

1.3 Other similar applications of CGMT

We mention several other estimators to which CGMT can be applied in a similar fashion to:

1. LASSO: This is the estimator arg min, g, ||Y — Xw]||3-+A||w]];. It can be rewritten via the variational
formula a?/2 = max,{ab — b*/2} as a min-max problem in a form which CGMT can be applied to.

2. Ridge regression: This is the same as LASSO but uses ¢, penalty instead.

3. Interpolation: This corresponds to the limit of ridge regression as A — 0.

2 Motivating example for belief propagation

We now study a motivating problem for the next topic on belief propagation/cavity method/message
passing algorithms. These three terms will be used more or less interchangeably in what follows. Consider
the linear model Y = Xw* + ¢ where X € R™? is a design matrix, £ ~ N(0,0%I,) is Gaussian noise, and
w* € {£1}?. How do we estimate w*? A natural approach is to compute the MLE

e = argmin ||Y — Xw||3.
we{£1}p

This is a nonconvex optimization problem. One way to solve it is to use integer programming, but this
becomes computationally intractable for large p. Belief propagation gives us an alternative path. Viewing



the constraint w* € {+1}? as a prior, suppose we place a uniform prior w* ~ Unif({£1}?). By Bayes’
theorem, the posterior p(w*|X,Y’) is given by

p(w*X,Y) o< p(Y|X, w*)p(w*|X)

o p(Y]X, w")
o oxp [ I = Xwll3
202
o (Il = X7l 207 Xw)
202
— (W) X" Xw* + 2(Y, Xw*)
X exp
202

The expression inside the exponential is a quadratic polynomial in the entries of w*, and we call such a
model an Ising model (to be defined formally in the next lecture). The cavity method can be thought of
as an alternative to the replica method used to solve statistical physics models such as these.
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