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Cavity method, Belief propagation & TAP I

1 Recall and Model Definition

Recall from last time, we had a model Y = Xw∗ + ξ where w∗ ∼ Uni{±1}, ξ ∼ N (0, σ2I).
The posterior distribution on w∗|Y,X is an Ising model.

Definition 1 (Ising model). Parameters: A symmetric matrix J ∈ Rn×n and h ∈ Rn. A distribution µ on
x ∈ {±1}n is given by:

µ(x) =
1

z
exp

(
1

2
⟨x, Jx⟩+ ⟨h, x⟩

)
where z is the partition function.

Remark 1. Below we assume X = (X1, · · · , Xn) ∼ µ.

2 Goal and Examples

Goal: We want to ”solve” µ in terms of J and h for ”nice” Js.

Example 1. We want to estimate the expectation EX∼µ[X].

Example 2 (Sherrington-Kirkpatrick (SK) model). Let M be a i.i.d. symmetric matrix where Mij ∼
N (0, 1

n
). The distribution is:

p(x) ∝ exp(β⟨x,Mx⟩+ ⟨h, x⟩)

where β > 0 is the inverse temperature.

Remark 2. The SK model is the historical origin for some of these techniques.

Example 3 (Ising model on a star graph). This is an ”easier” case and represents the heart of the cavity
method. The graph (shown below) has a central node X1 connected to leaf nodes X2, . . . , Xn. The edge
weights are w2, . . . , wn.
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The distribution is:

p(x) =
1

z
exp

(
x1

n∑
j=2

wjxj + ⟨h, x⟩

)
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3 Cavity Method on a Star Graph (Example 3 in Part 2)

3.1 Cavity Method

Definition 2 (Cavity (”Hole”) measure). Let x−1 := (x2, . . . , xn) and h−1 := (h2, . . . , hn). The cavity
measure p−1 is the distribution on x−1 (i.e., with node 1 removed):

p−1(x−1) =
1

z−1

exp(⟨h−1, x−1⟩)

Remark 3. Observe that p−1 is a product measure.

3.2 Warm up 1: Compute z−1

The partition function for the cavity measure is:

z−1 =
∑

x−1∈{±1}n−1

exp(⟨h−1, x−1⟩)

=
∑

x−1∈{±1}n−1

n∏
j=2

exp(hjxj)

=
n∏

j=2

(
ehj + e−hj

)
= 2n−1

n∏
j=2

cosh(hj)

where cosh(x) :=
ex + e−x

2
. (Similarly, sinh(x) :=

ex − e−x

2
and tanh(x) :=

sinh(x)

cosh(x)
.)

3.3 Warm up 2: Compute Ep−1
[Xj]

By Remark 3, for any j ∈ {2, . . . , n}: The marginal p−1(xj) is:

p−1(xj) =
ehjxj

2 cosh(hj)

The expectation is:

Ep−1 [Xj] =
ehj · (1) + e−hj · (−1)

2 cosh(hj)
=

ehj − e−hj

2 cosh(hj)
= tanh(hj)

3.4 Deriving the marginal p(x1)

Lemma 1. The marginal distribution for the central node x1 is:

p(x1) ∝ eh1x1

n∏
j=2

cosh(wjx1 + hj)

cosh(hj)

∝ eh1x1

n∏
j=2

(1 + x1 tanh(wj) tanh(hj))
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Proof. We can write the full distribution p(x) using the cavity measure p−1:

p(x) = p(x1, x−1) =
1

z
exp

(
h1x1 + x1

n∑
j=2

wjxj + ⟨h−1, x−1⟩

)

=
z−1

z
p−1(x−1) exp

(
h1x1 + x1

n∑
j=2

wjxj

)

To find the marginal p(x1), we sum over all x−1:

p(x1) =
∑
x−1

p(x1, x−1)

=
z−1

z

∑
x−1

p−1(x−1) exp

(
h1x1 + x1

n∑
j=2

wjxj

)

=
z−1

z
Ep−1

[
exp

(
h1x1 + x1

n∑
j=2

wjXj

)]

Since p−1 is a product measure, the expectation splits:

Ep−1

[
n∏

j=2

ex1wjXj

]
=

n∏
j=2

Ep−1 [e
x1wjXj ]

Each term in the product is computed as:

Ep−1 [e
x1wjXj ] =

∑
xj∈{±1}

p−1(xj)e
x1wjxj =

∑
xj∈{±1}

ehjxj

2 cosh(hj)
ex1wjxj =

ehj+x1wj + e−hj−x1wj

2 cosh(hj)
=

cosh(wjx1 + hj)

cosh(hj)

Moreover,
cosh(wjx1 + hj) = cosh(hj) cosh(wj) + x1 sinh(hj) sinh(wj)

so
cosh(hj + x1wj)

cosh(hj)
= cosh(wj)(1 + x1 tanh(hj) tanh(wj))

Substituting this back gives the lemma.

Remark 4. If we have Cj, uj→1, s.t.

1 + x1 tanh(wj) tanh(hj) = Cje
uj→1x1

for x1 ∈ {±1}.
We can solve for Cj, uj→1:

C2
j = (1 + tanh(wj) tanh(hj))(1− tanh(wj) tanh(hj))

i.e.

Cj =
√

1− tanh(wj)2 tanh(hj)2

e2uj→1 =
1 + tanh(wj) tanh(hj)

1− tanh(wj) tanh(hj)

so
uj→1 = tanh−1(tanh(wj) tanh(hj))
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Proposition 1 (Marginal for x1). The marginal p(x1) can be written in a simple form:

p(x1) ∝ eHx1

where H = h1 +
∑n

j=2 uj→1.
From this, the expectation is simply:

E[X1] = tanh(H)

Proof. By Lemma 1 and Remark 4,

p(x1) ∝ eh1x1

n∏
j=2

euj→1x1 = eHx1

From this,

z1 =
∑

x∈{±1}

eHx = eH + e−H = 2 cosh(H)

E[X1] = (+1) ·
(

eH·(+1)

2 cosh(H)

)
+ (−1) ·

(
eH·(−1)

2 cosh(H)

)
=

2 sinh(H)

2 cosh(H)
= tanh(H)

4 Cavity Method for the SK Model (Example 2 in Part 2)

Now we return to the SK model, which is on a fully connected graph.

p(x) ∝ exp

(∑
i,j

Jijxixj +
∑
j

hjxj

)
where Jij ∼ N (0, β

2

n
).

Key Guess: Even in this dense graph, the nodes Xj (for j ̸= i) are conditionally independent given
Xi for any i.

Xi

X1 X2

. . .
Xn

J i1 J i
2

J
in

Xj , j ̸= i

This cannot be exactly true. In reality, there’s a bunch of interactions between Xj, j ̸= i, which are
caused by all the other terms in J . However, J is a random matrix, and all of its rows are independent,
so it’s kind of reasonable to guess although they have some complicated relationship, for the respective
calculating E[Xi], the interaction between Xj, j ̸= i actually not be very important.

Based on this guess, we expect the mean E[Xi] to be the form similar with the star graph:

E[Xi] ≈ tanh

(
hi +

∑
j ̸=i

uj→i

)
where uj→i = tanh−1(tanh(Jij)mj→i). Here we don’t use tanh(hj). Instead, we use mj→i, which represents
the cavity mean of Xj with i has been deleted. On the star graph, we can calculate that it is tanh(hj),
but in the SK model, it is an unknown quantity.

Observation: Since Jij ∼ N (0, β
2

n
), Jij is small (J2

ij = O( 1
n
)). Roughly speaking, mj→i ≈ mj := E[Xj].
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5 Näıve Mean-Field

Now we try to accept the guess in Part 4. Basically, we want to come up with a system of equations which
is called the Näıve Mean-Field such that their solution tells us the properties of the model.

For the n unknown means m1, . . . ,mn, we have n equations: (assuming hi = 0 for simplicity)
mi = tanh

(∑
j ̸=i

uj→i

)
uj→i = tanh(Jij)mj

In the modern day, we have hindsight to guess how to calculate the basic solutions to the equations and
there’s a relatively simple and clever way to prove that basically the equations do have a solution.

This works in many cases, but not in the SK model. And this is the observation behind TAP, which is
the next thing we’ll discuss.
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