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Cavity method, Belief propagation & TAP I

1 Recall and Model Definition

Recall from last time, we had a model Y = Xw* + ¢ where w* ~ Uni{£1},& ~ N(0,021).
The posterior distribution on w*|Y, X is an Ising model.

Definition 1 (Ising model). Parameters: A symmetric matrix J € R"*" and h € R™. A distribution x on
x € {£1}" is given by:
1 1
) = Lexp (5o 72) + (.0))

z

where z is the partition function.

Remark 1. Below we assume X = (X3, -+, X,,) ~ p.

2 Goal and Examples

Goal: We want to ”solve” p in terms of J and h for "nice” Js.
Example 1. We want to estimate the expectation Ex.,[X].

Example 2 (Sherrington-Kirkpatrick (SK) model). Let M be a ii.d. symmetric matrix where M;; ~
N(0,1). The distribution is:
p(x) o< exp(B(x, Mz) + (h,x))

where [ > 0 is the inverse temperature.

Remark 2. The SK model is the historical origin for some of these techniques.

Example 3 (Ising model on a star graph). This is an ”easier” case and represents the heart of the cavity
method. The graph (shown below) has a central node X; connected to leaf nodes X, ..., X,,. The edge
weights are ws, ..., w,.

The distribution 1is:

p(z) = %exp (:cl ijxj + (h, x>>



3 Cavity Method on a Star Graph (Example 3| in Part 2)

3.1 Cavity Method

Definition 2 (Cavity ("Hole”) measure). Let z_; := (x9,...,2,) and h_y := (ha,..., h,). The cavity
measure p_; is the distribution on x_; (i.e., with node 1 removed):

poa(r ) = i exp((h_1,7_1))

Remark 3. Observe that p_; is a product measure.

3.2 Warm up 1: Compute z_;

The partition function for the cavity measure is:

Z_1 = Z exp((h—1,7-1))

z_1e{£1}n"1

= > 1ewhz)
r_ye{£1}n—1j=2

n
= (ehj + e*hj)
j=2

=2t H cosh(h;)
=2

T —x T _e* inh
where COSh(LU) - % (Slmﬂarly, SlIlh(JJ) = € 26 and tanh(x) = ig;h((ig )

3.3 Warm up 2: Compute E,  [X]]
By [Remark 3| for any j € {2,...,n}: The marginal p_;(x;) is:

elhiti

pi(ey) = 2 cosh(h;)
The expectation is:
ehi . (1) +e hi. (1) B ehi — el
2 cosh(h;) ~ 2cosh(h;)

B, [X;] = = tanh(h;)
3.4 Deriving the marginal p(z;)

Lemma 1. The marginal distribution for the central node xq is:

+ 11 cosh(w;x; + hy)
p(z1) o Mo H COSil(h') ]
j

oc e H(l + @1 tanh(w;) tanh(h;))

J=2



Proof. We can write the full distribution p(x) using the cavity measure p_;:

1 n
p(r) = pz1, 1) = ~ eXP <h1x1 + 14 ija:j + (h_1, x1>>

7j=2
Z_1 "
= 7]),1(1',1) exXp (hll’l + 2 ZQ ’lUjiL'j)
J:

To find the marginal p(x;), we sum over all z_:

pley) =Y play,x1)

Z_1 -
. p_1(x 1)exp< 121 + 11 g w3x3>

xr_1 =2

exp (hll‘l + 21 Z ijj>]

Jj=2

Z-1
=k
z

P—-1

Since p_; is a product measure, the expectation splits:

n n

Tiw; X5 | Trw; X,
[Lem | = 1] By ifem]
j:2 =2

Ep—l

Each term in the product is computed as:

ehij ehitmiwj 4 e=hi—ziwi  cogh(w,zy + hy)
E z1w; X () eF Wit — B L L g = J J
pale ] Z P-i()e Z 2008h<hj)e 2 cosh(h;) cosh(h;)
zje{£l} xje{£1}
Moreover,
cosh(w;zy + h;j) = cosh(h;) cosh(w;) + z; sinh(h;) sinh(w,)

SO h(h )

CcoSs P+ rw;

o 2 = cosh(u,)(1+ o tanh(h) tanh ()

Substituting this back gives the lemma. O]

Remark 4. If we have C}, uj_, s.t.
1 + 2, tanh(w;) tanh(h;) = Cje=1*1

for z; € {£1}.
We can solve for C}, u;1:

C? = (1 + tanh(w;) tanh(h;))(1 — tanh(w;) tanh(h;))

J

ie.
C; = /1~ tanh(w;)? tanh(h;)?
St 1 4 tanh(w,) tanh(h;)
1 — tanh(w,) tanh(h;)

SO

uj_,; = tanh ™! (tanh(w;) tanh(h;))

3



Proposition 1 (Marginal for z;). The marginal p(z;) can be written in a simple form:

p(ry) o

where H = hy + Y77, uj1.
From this, the expectation is simply:

E[X] = tanh(H)

Proof. By [Lemma 1] and [Remark 4]

n

p(ffl) o 6h1x1 | | eWi—1T1 — eHﬂCl

j=2
From this,
2 = Z e = efl e = 2cosh(H)

ze{£1}
_ e (+D) e\ 2sinh(H)
510 = () (gemm ) + 0 (seomma) = seoi = @00

4 Cavity Method for the SK Model (Example 2| in Part 2)

Now we return to the SK model, which is on a fully connected graph.

p(z) o< exp (Z Jijxir; + Z hjxj>
] J

where Jz'j ~ N(O, %2)
Key Guess: Even in this dense graph, the nodes X, (for j # i) are conditionally independent given
X, for any 1.

This cannot be exactly true. In reality, there’s a bunch of interactions between X, j # 4, which are
caused by all the other terms in J. However, J is a random matrix, and all of its rows are independent,
so it’s kind of reasonable to guess although they have some complicated relationship, for the respective
calculating E[X;], the interaction between X, j # i actually not be very important.

Based on this guess, we expect the mean E[X;] to be the form similar with the star graph:

E[X;] ~ tanh (hi + Z uj%)
J#i
where u;_,; = tanh_l(tanh(Jij)mj%). Here we don’t use tanh(h;). Instead, we use m;_,;, which represents
the cavity mean of X; with ¢ has been deleted. On the star graph, we can calculate that it is tanh(h;),
but in the SK model, it is an unknown quantity.
Observation: Since J;; ~ N(0, 2, Jij is small (J2 = O(%)). Roughly speaking, m;_,; = m; := E[X]].

n
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5 Naive Mean-Field

Now we try to accept the guess in Part 4. Basically, we want to come up with a system of equations which
is called the Naive Mean-Field such that their solution tells us the properties of the model.

For the n unknown means my, ..., m,, we have n equations: (assuming h; = 0 for simplicity)
m,; = tanh (Z uj_n»)
J#

Uj—i = tanh(Jij)mj

In the modern day, we have hindsight to guess how to calculate the basic solutions to the equations and
there’s a relatively simple and clever way to prove that basically the equations do have a solution.

This works in many cases, but not in the SK model. And this is the observation behind TAP, which is
the next thing we’ll discuss.
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