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Gumbel Trick, Random Energy Model (cont’d)

1 Gumbel Distribution

Recap. Suppose that gi
i.i.d.∼ N(0, 1), last time we concluded that

E[max
i≤N

gi]/
√
2 logN → 1 as N → ∞. (1)

The calculation consists of an upper bound based on the Chernoff bound and a lower bound based the
concentration.

Convergence of maximal. For a class of light-tailed distributions including the Gaussian, the maximal
of n iid samples, after proper centering and scaling, converges to the same limit distribution, which is the
Gumbel distribution.

Here, we consider the extreme values of exponential distribution random variables as an illustration.

Suppose that Zi
i.i.d.∼ EXP(1), i.e., P(Zi ≥ t) = e−t for t ≥ 0. The heuristic for this is that the probability

for each Zi to be near logN is about 1/N , and (1−1/N)N ≈ e−1. We conjecture that maxi Zi concentrates
near logN , similar to (1). For t > 0, we can calculate the CDF of maxi Zi at logN + t as

P(maxZi ≤ logN + t)
ind
=

(
1− e−t

N

)N

≈ e−e−t

. (2)

Gumbel distribution. The gumbel distribution Gumbel(µ, 1) is defined as the distribution with CDF/PDF

P(X ≤ x) = e−e−(x−µ)

; p(x) = e−(x−µ)e−e−(x−µ)

.

This distribution is heavily asymmetric. For x > µ, p(x) looks like e−(x−µ) and decays exponentially.

However for x < µ, p(x) ∼ e−e−(x−µ)
decays double-exponentially. The heuristic is that for the maximal

of exponential RV to be smaller than logN requires all of them to be smaller than logN , which happens
with probability ∼ e−e−t

.

Maximal of Gumbels. Since Gumbel distribution is the limiting distribution for the maximal of light-
tailed distributions, it is natural to conjecture that maximals of Gumbel RVs are still Gumbel. Supppose
that X ∼ Gumbel(α, 1) and Y ∼ Gumbel(β, 1) are independent. We wonder how is W = max(X, Y )
distributed.

Sketch for large α, β. We suppose that α = logN and β = logM for N,M ∈ Z>0. Since α, β are
both location parameters, we can write W as

W = max{X, Y } = max{ X − α︸ ︷︷ ︸
Gumbel(0,1)

+α, Y − β︸ ︷︷ ︸
Gumbel(0,1)

+β}

d.
≈ max

i
{max

i≤N
Zi, max

N<i≤M+N
Zi}

= max
i≤N+M

Zi.
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Here Zi
i.i.d.∼ Gumbel(0, 1) and the second line holds from (2). From this decomposition, we see that

W follows Gumbel(log(N + M), 1) for large N,M , approximately. Roughly, we conclude that W ∼
Gumbel(log(eα + eβ), 1). This argument can only be used when M,N are large log-integers.

Exercise 1. Prove that max(X, Y ) ∼ Gumbel(log(eα + eβ), 1) exactly for all α, β ∈ R.

Given that the statement above is true, we can prove that maxi≤N Xi ∼ Gumbel(log(
∑

i e
αi), 1), where

Xi ∼ Gumbel(αi, 1) are independent. We can also write it in a different way. Suppose that ξi
i.i.d.∼

Gumbel(0, 1). It holds that that

E[max
i

{αi + ξi}] = E[max
i

Xi]

= log(
∑
i

eαi) + γ,

where γ = E[ξ1] = limN(− logN +
∑

k≤N k−1) is the Euler-Mascheroni constant. We can also note that
the index for which the maximum is attained follows the softmax distribution with parameter αi.

This identity is called the Gumbel trick.

Gumbel trick in REM. We illustrate the use of the Gumbel trick in the random energy model. For

gi
i.i.d.∼ N(0, 1), we pair it with independent ξi ∼ Gumbel(0, 1). Then we have that

E[log
∑
i

eβgi ] + γ = E
[
E
[
max

i
[βgi + ξi] | g1, . . . gN

]]
= E[max

i
[βgi + ξi]]

≥ E[max
i

βgi + E[ξi]] = β E[max
i

gi] + γ.

The last inequality comes from interchanging expectation and maximum.

2 Backgrounds in Statistical Physics

In statistical physics1, we study the phase transition using random energy models. A typical example is
the phase transition of water, which exhibit different phases (solid, liquid, gas) at different temperatures.

Suppose that we have a system of particles in a thermal reservoir at fixed temperature T , and the
inverse temperature is β = 1/T . 2 The system is encoded with a state in the state space x ∈ X , which
for example can be the spins {+1,−1}N , or 3D locations R3N , where N is the number of particles. For
each state x, we associate the system with an energy H(x), which is a function from X to R. Given these
componentns, the Boltzmann distribution over X is used to describe the chance of the system being in
state x at equilibrium:

p(x) =
1

Z(β)
e−βH(x), Z(β) =

∑
x∈X

e−βH(x). (3)

For example in the water model, the energy is described by two parts, we can roughly specify the energy
function as

H(x) = [Polar bonds] + [Gravitational potential energy].

The polar bonds describe the interaction between particles that are caused by molecular dipoles. This
model is useful to describe the phase transition of water, as

1See Mezard and Montanari’s textbook for more details.
2In physics literature, β = 1/kT where k is the Boltzmann constant is more used.
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• In the high temperature limit β → 0, pβ(x) ≈ Unif(X ). And this says that the particle system
appears to be non-interacting and non-structured.

• In the moderate temperature regime, the interaction between particles matters, and pβ(x) ≈ e−βH(x)

is not uniform.

• In the low temperature limit β → ∞, pβ(x) is concentrated on the minimizers of H(x), i.e., pβ(x) ∼
Unif(argminx H(x)), where argminx H(x) = {x : H(x) = miny H(y)}. This means that the system
is frozen in the ground states (ice).

We can formalize the low temperature limit as follows. For each x ∈ X \ argminx H(x), we have

pβ(x) =
e−βH(x)∑
x∈X e−βH(x)

≤ e−βminx H(x)

maxx∈X e−βH(x)

= exp(−β(H(x)−min
x

H(x))) → 0, as β → ∞.

For x ∈ argminx H(x), we have that

pβ(x) =
e−βminx H(x)∑
x∈X e−βH(x)

=
(
|X |+

∑
x∈X\argminx H(x)

e−βH(x)+βminx H(x))−1 → 1

| argminx H(x)|
, as β → ∞.

The model in (3) is called the canonical ensemble in statistical physics.

Free energy, REM. Some times we see formulation like pβ(x) = exp{−β(F − E(x))}, where F =
β−1 logZβ is called the free energy, and E(x) = H(x) is called the internal energy.

Sometimes we want to study the canonical ensemble with random energy function H(x). For example,
in the random energy model (REM), we suppose that H(x) are independent Gaussian random variables

for different x, i.e., H(x)
i.i.d.∼ N(0, N/2) for x ∈ X = {+1,−1}N .

In this case the pβ is a random measure on the state space. And we are interested in E[logZβ] = E[βF ]
and the expectation is taken with respect to the randomness of H(x).

Trailer. We will compute E[logZβ] in REM.

• Fact I. It holds that logZβ ≈ E[logZβ]. In various models this is easy to justify.

• Fact II. Zβ
?
≈ E[Zβ]. This might not be always correct. The heuristic is that Zβ is a exponential of

other things. And the chance for Zβ to be large is considerable due to the heavy-tailedness.

In summary, logZβ is tangible and we will compute the expectation in the next lecture.
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