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Lecture 4 : Solving the REM via Replica Method

1 Model and Definitions

Definition 1 (Random Energy Model). Let n ∈ N and define the configuration space X = {±1}n. For
each X ∈ X , let E(X) be an independent random variable distributed as

E(X) ∼ N
(
0,

n

2

)
.

For β > 0 (inverse temperature), define the probability measure pβ on X by

pβ(X) =
1

Zβ

exp(−βE(X)) .

Remark 1. Because the random variable E(X) is symmetric in distribution, i.e E(X) ∼ −E(X), we can
write:

pβ(X) =
1

Zβ

exp(βE(X)) .

The goal is to compute

E[logZβ] , Zβ =
∑
X∈X

exp(βE(X)) .

Let {ξ(X)}X∈X be i.i.d. standard Gumbel random variables with mean γ. Using the Gumbel trick :

E
[
logZβ

]
= EE,ξ

[
max
X∈X

{βE(X) + ξ(X)}
]
− γ.

By Jensen’s inequality,
E[logZβ]︸ ︷︷ ︸
quenched

≤ logE[Zβ]︸ ︷︷ ︸
annealed

.

2 Log as a Limit and Replica Identity

Recall that ∫
xp dx =


xp+1

p+ 1
+ C, if p ̸= −1 (power rule),

log(x) + C, if p = −1.

Informally, we can view log x as the limiting case of the power rule. Set k := p+ 1 (so k → 0 as p → −1).
Then

xp+1 − 1

p+ 1
=

ek log x − 1

k
.

Use the Taylor series of the exponential around 0:

ek log x ≈ 1 + k log x.
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Therefore,

lim
k→0

xk − 1

k
= lim

k→0

ek log x − 1

k
= log x.

This can also be derived by

xk = ek log x ⇒ d

dk
xk = ek log x log x = xk log x.

Evaluating at k = 0 gives
d

dk
xk

∣∣∣∣
k=0

= log x,

which is consistent with the limit representation above.

Lemma 1. Let X be a well-behaved random variable. Then

E[logX] = lim
k→0

1

k
logE[Xk].

Proof. Use the identity Xk = ek logX :

E[Xk] = E[ek logX ] ⇐⇒ E[Xk] =
1

k
logE[Xk].

Since E[ek logX ] is differentiable at k = 0 and E[e0·logX ] = 1, we have

d

dk
logE[Xk]

∣∣∣∣
k=0

=
E[Xk logX]

E[Xk]

∣∣∣
k=0

= E[logX].

Hence,

E[logX] = lim
k→0

1

k
logE[Xk].

We now apply lemma 1 to Zβ:

E[logZβ] = lim
k→0

1

k
logE[Zk

β ].

Therefore, it remains to compute E[Zk
β ].

3 Replica Method: Integer Moments

The key idea of the replica method is to first compute E[Zk
β ] for integer k ≥ 1, and then to extend k from

the integers to real values near 0.

For notation purposes, let Z := Zβ.
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3.1 Remark on the Moment Problem

In general, the moments E[Zk] for k ≥ 0 do not always uniquely determine the distribution (this is the
moment problem). It is related to existence of the moment generating function (see Carleman’s condition).
For example:

f(x) = e−|x| has MX(t) < ∞ for t in a neighborhood of 0,

whereas
f(x) = e−|x|0.99 has MX(t) = ∞ for all t > 0 (tails are too heavy).

Likewise, the former distribution is determined by its moments but the latter is not. In the context of
the replica method, Z is a sum of terms of the form eG, with G a gaussian. Therefore Z does not have a
moment-generating function, since

E[ekeG ] = ∞ for any k > 0

Hence, the values of E[Zk] at integer k likely do not determine the distribution uniquely (but in practice,
the replica method works nonetheless).

3.2 Replica Expression

We are interested in the limit

lim
n→+∞

1

n
E[logZ] = lim

n→+∞
lim
k→0

1

n
· 1
k
logE[Zk]. (1)

We first compute for integer k ≥ 1:

E[Zk] = E

(∑
X∈X

exp(βE(X))

)k
 =

∑
X1,...,Xk∈X

E
[
exp
(
β(E(X1) + · · ·+ E(Xk))

)]
.

Let E =
(
E(X1), E(X2), . . . , E(Xk)

)⊤
. By assumption, the random variables {E(Xi)}ki=1 are independent,

centered Gaussian random variables. Hence, their covariance matrix Σ ∈ Rk×k is diagonal such that

Σij = E
[
E(Xi)E(Xj)

]
=

n

2
1{Xi = Xj}.

For any a ∈ Rk, the moment generating function is:

E
[
exp
(
a⊤E

)]
= exp

(
1

2
a⊤Σa

)
.

Taking a = β 1k, we obtain:

E[Zk] =
∑

X1,...,Xk∈X

E
[
exp
(
a⊤E

)]
=

∑
X1,...,Xk∈X

exp

(
1

2
a⊤Σa

)

=
∑

X1,...,Xk∈X

exp

(
β2

2

k∑
i,j=1

E
[
E(Xi)E(Xj)

])

=
∑

X1,...,Xk∈X

exp

(
β2n

4

k∑
i,j=1

1{Xi = Xj}

)
.
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4 Overlap Representation and Counting

4.1 Overlap matrix and partitions

Notice that we sum over all k-tuples (X1, . . . , Xk), where each Xi ∈ X = {±1}n. Two elements Xi and Xj

may coincide or differ, and the expression

k∑
i,j=1

1{Xi = Xj}

depends only on which configurations are the same.

We introduce the overlap matrix

Qij = 1{Xi = Xj}, 1 ≤ i, j ≤ k.

Q defines an equivalence relation on {1, . . . , k}:
i ∼ j iff Xi = Xj (i.e. same on all n entries).

Let the number of distinct configurations among (X1, . . . , Xk) be r. Equivalently, the equivalence relation
induced by Q partitions the index set {1, . . . , k} into r disjoint subsets:

{A1, . . . , Ar}, A1 ⊔ A2 ⊔ · · · ⊔ Ar = {1, . . . , k}.

Note that to choose r distinct configurations from X (of size 2n), there are

(
2n

r

)
possible choices.

Let Qr denote the set of all possible overlap matrices Q that correspond to partitions with exactly r
distinct equivalence classes. Thus we can write:

E[Zk] =
k∑

r=1

(
2n

r

) ∑
Q∈Qr

exp

(
β2n

4

k∑
i,j=1

Qij

)
.

5 Asymptotic Evaluation as n → ∞

5.1 Large-n counting and overlap sizes

Assume that as n → +∞, the quantity
1

n
· 1
k
logE[Zk]

is continous in the variable k at k = 0. We can then interchange limits in (⋆):

lim
n→+∞

1

n
E[logZ] = lim

k→0
lim

n→+∞

1

n
· 1
k
logE[Zk].

Let a1, . . . , ar denote the sizes of the equivalence classes (so that a1 + · · ·+ ar = k). Then:

k∑
i,j=1

Qij =
r∑

j=1

aj

Also note that as n → +∞: (
2n

r

)
≈ exp(nr log 2).

Therefore, asymptotocally we can write:

E[Zk] ≈
k∑

r=1

exp

[
n
(
r log 2 +

β2

4

r∑
j=1

a2j

)]
.
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5.2 Dominant exponential

Finally, since the sum is dominated by its largest exponential term as n → +∞, we can replace the
summation by the maximizer over both the number of equivalence classes r and the admissible (a1, . . . , ar):

1

k
· 1
n
logE[Zk] −→ 1

k
max
1≤r≤k

a1+···+ar=k

(
r log 2 +

β2

4

r∑
j=1

a2j

)
. (⋆)

Observe that
∑r

j=1 a
2
j is maximized when the mass is most uneven (one large block) and is minimized

when the blocks are perfectly balanced. Hence, the two extreme cases are:

(i) r = 1 :
∑

a2j = k2,

(ii) r = k :
∑

a2j = k.

We want a trade-off between the terms:

� r log 2 : increases with r;

�

β2

4

r∑
j=1

a2j : decreases with r.

We approximate the balanced case by setting

aj =
k

r
, j = 1, . . . , r.

Then
r∑

j=1

a2j = r

(
k

r

)2

=
k2

r
.

Substituting into (⋆) gives the asymptotic approximation

1

k
· 1
n
logE[Zk] ≈ 1

k
max
1≤r≤k

(
r log 2 +

β2

4

k2

r

)
.

6 Optimization over r

Now, we wish to maximize the function

f(r) = r log 2 +
β2k2

4r
,

with derivatives

f ′(r) = log 2− β2k2

4r2
, f ′′(r) =

β2k2

2r3
> 0.

Therefore, f is a convex function and the maximization is over the closed interval [1, k]. The maxima
happen at the boundaries:

� f(1) = log 2 +
β2k2

4
.

� f(k) = k log 2 +
β2k

4
.

Hence, for k ≥ 1, the asymptotic expression in (⋆) gives

1

k
· 1
n
logE[Zk] ≈ max

{
1

k

(
log 2 +

β2k2

4

)
, log 2 +

β2

4

}
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7 Replica Limit

7.1 Taking k → 0

Recall that as part of the replica method, we now consider k < 1. We guess that instead of taking the
maximum of f , we should take the minimum. Setting f ′(r) = 0, we get :

r∗ =
βk

2
√
log 2

, f ∗ = f(r∗) = β
√
log 2.

Therefore, we have 3 options :

1

n
E[logZ] ≈ min

{1
k

(
log 2 +

β2k2

4

)
, log 2 +

β2

4
, β
√
log 2

}
.

Note that :
1

k

(
log 2 +

β2k2

4

)
→ +∞ , k → 0.

The two remaining expressions coincide at the critical point βc

log 2 +
β2
c

4
= βc

√
log 2 =⇒ βc = 2

√
log 2.

Hence,

1

n
E[logZ] =

log 2 +
β2

4
, if β < βc (high temperature),

β
√
log 2, if β ≥ βc (low temperature).

8 Consistency Checks

8.1 Jensen bound

By Jensen’s inequality,
1

n
E[logZ] ≤ 1

n
logE[Z] = log 2 +

β2

4
,

which is the high-temperature case.

8.2 Slope check

Differentiating
1

n
logZ =

1

n
log
∑
X∈X

exp(βE(X))

with respect to β gives

d

dβ

(
1

n
logZ

)
=

1

n

∑
X∈X E(X) exp(βE(X))∑

X∈X exp(βE(X))
=

1

n
E[E(X)].

Since E(X) ∼ N (0, n/2), we have

E[E(X)] ≤ max
X∈X

E(X) ≈ n
√

log 2.

This is consistent the slope
√
log 2 of the low-temperature case.
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