These notes have not received the scrutiny of publication. They could be missing important references, etc.

Scribe: Antonia Baies

Lecturer: Frederic Koehler

Lecture 4: Solving the REM via Replica Method

1 Model and Definitions

Definition 1 (Random Energy Model). Let $n \in \mathbb{N}$ and define the configuration space $\mathcal{X} = \{\pm 1\}^n$. For each $X \in \mathcal{X}$, let E(X) be an independent random variable distributed as

$$E(X) \sim \mathcal{N}\left(0, \frac{n}{2}\right)$$
.

For $\beta > 0$ (inverse temperature), define the probability measure p_{β} on \mathcal{X} by

$$p_{\beta}(X) = \frac{1}{Z_{\beta}} \exp(-\beta E(X)).$$

Remark 1. Because the random variable E(X) is symmetric in distribution, i.e $E(X) \sim -E(X)$, we can write:

$$p_{\beta}(X) = \frac{1}{Z_{\beta}} \exp(\beta E(X)).$$

The goal is to compute

$$\mathbb{E}[\log Z_{\beta}]$$
 , $Z_{\beta} = \sum_{X \in \mathcal{X}} \exp(\beta E(X))$.

Let $\{\xi(X)\}_{X\in\mathcal{X}}$ be i.i.d. standard Gumbel random variables with mean γ . Using the Gumbel trick:

$$\mathbb{E}\big[\log Z_{\beta}\big] = \mathbb{E}_{E,\xi}\Big[\max_{X\in\mathcal{X}}\{\beta E(X) + \xi(X)\}\Big] - \gamma.$$

By Jensen's inequality,

$$\underbrace{\mathbb{E}[\log Z_{\beta}]}_{\text{quenched}} \leq \underbrace{\log \mathbb{E}[Z_{\beta}]}_{\text{annealed}}.$$

2 Log as a Limit and Replica Identity

Recall that

$$\int x^p dx = \begin{cases} \frac{x^{p+1}}{p+1} + C, & \text{if } p \neq -1 \text{ (power rule),} \\ \log(x) + C, & \text{if } p = -1. \end{cases}$$

Informally, we can view $\log x$ as the limiting case of the power rule. Set k := p+1 (so $k \to 0$ as $p \to -1$). Then

$$\frac{x^{p+1} - 1}{p+1} = \frac{e^{k \log x} - 1}{k}.$$

Use the Taylor series of the exponential around 0:

$$e^{k \log x} \approx 1 + k \log x.$$

Therefore,

$$\lim_{k \to 0} \frac{x^k - 1}{k} = \lim_{k \to 0} \frac{e^{k \log x} - 1}{k} = \log x.$$

This can also be derived by

$$x^k = e^{k \log x} \quad \Rightarrow \quad \frac{d}{dk} x^k = e^{k \log x} \log x = x^k \log x.$$

Evaluating at k = 0 gives

$$\left. \frac{d}{dk} x^k \right|_{k=0} = \log x,$$

which is consistent with the limit representation above.

Lemma 1. Let X be a well-behaved random variable. Then

$$\mathbb{E}[\log X] = \lim_{k \to 0} \frac{1}{k} \log \mathbb{E}[X^k].$$

Proof. Use the identity $X^k = e^{k \log X}$:

$$\mathbb{E}[X^k] = \mathbb{E}[e^{k \log X}] \iff \mathbb{E}[X^k] = \frac{1}{k} \log \mathbb{E}[X^k].$$

Since $\mathbb{E}[e^{k \log X}]$ is differentiable at k = 0 and $\mathbb{E}[e^{0 \cdot \log X}] = 1$, we have

$$\left. \frac{d}{dk} \log \mathbb{E}[X^k] \right|_{k=0} = \frac{\mathbb{E}[X^k \log X]}{\mathbb{E}[X^k]} \Big|_{k=0} = \mathbb{E}[\log X].$$

Hence,

$$\mathbb{E}[\log X] = \lim_{k \to 0} \frac{1}{k} \log \mathbb{E}[X^k].$$

We now apply lemma 1 to Z_{β} :

$$\mathbb{E}[\log Z_{\beta}] = \lim_{k \to 0} \frac{1}{k} \log \mathbb{E}[Z_{\beta}^{k}].$$

Therefore, it remains to compute $\mathbb{E}[Z_{\beta}^{k}]$.

3 Replica Method: Integer Moments

The key idea of the replica method is to first compute $\mathbb{E}[Z_{\beta}^{k}]$ for integer $k \geq 1$, and then to extend k from the integers to real values near 0.

For notation purposes, let $Z := Z_{\beta}$.

3.1 Remark on the Moment Problem

In general, the moments $\mathbb{E}[Z^k]$ for $k \geq 0$ do not always uniquely determine the distribution (this is the moment problem). It is related to existence of the moment generating function (see Carleman's condition). For example:

$$f(x) = e^{-|x|}$$
 has $M_X(t) < \infty$ for t in a neighborhood of 0,

whereas

$$f(x) = e^{-|x|^{0.99}}$$
 has $M_X(t) = \infty$ for all $t > 0$ (tails are too heavy).

Likewise, the former distribution is determined by its moments but the latter is not. In the context of the replica method, Z is a sum of terms of the form e^G , with G a gaussian. Therefore Z does not have a moment-generating function, since

$$\mathbb{E}[e^{ke^G}] = \infty \quad \text{for any } k > 0$$

Hence, the values of $\mathbb{E}[Z^k]$ at integer k likely do not determine the distribution uniquely (but in practice, the replica method works nonetheless).

3.2 Replica Expression

We are interested in the limit

$$\lim_{n \to +\infty} \frac{1}{n} \mathbb{E}[\log Z] = \lim_{n \to +\infty} \lim_{k \to 0} \frac{1}{n} \cdot \frac{1}{k} \log \mathbb{E}[Z^k]. \tag{1}$$

We first compute for integer $k \geq 1$:

$$\mathbb{E}[Z^k] = \mathbb{E}\left[\left(\sum_{X \in \mathcal{X}} \exp(\beta E(X))\right)^k\right] = \sum_{X_1, \dots, X_k \in \mathcal{X}} \mathbb{E}\left[\exp(\beta (E(X_1) + \dots + E(X_k)))\right].$$

Let $\mathbf{E} = (E(X_1), E(X_2), \dots, E(X_k))^{\top}$. By assumption, the random variables $\{E(X_i)\}_{i=1}^k$ are independent, centered Gaussian random variables. Hence, their covariance matrix $\Sigma \in \mathbb{R}^{k \times k}$ is diagonal such that

$$\Sigma_{ij} = \mathbb{E}[E(X_i)E(X_j)] = \frac{n}{2} \mathbf{1}\{X_i = X_j\}.$$

For any $\mathbf{a} \in \mathbb{R}^k$, the moment generating function is:

$$\mathbb{E} \left[\exp(\mathbf{a}^{\top} \mathbf{E}) \right] = \exp \left(\frac{1}{2} \, \mathbf{a}^{\top} \mathbf{\Sigma} \, \mathbf{a} \right).$$

Taking $\mathbf{a} = \beta \mathbf{1}_k$, we obtain:

$$\mathbb{E}[Z^k] = \sum_{X_1, \dots, X_k \in \mathcal{X}} \mathbb{E}\left[\exp(\mathbf{a}^{\top} \mathbf{E})\right]$$

$$= \sum_{X_1, \dots, X_k \in \mathcal{X}} \exp\left(\frac{1}{2} \mathbf{a}^{\top} \mathbf{\Sigma} \mathbf{a}\right)$$

$$= \sum_{X_1, \dots, X_k \in \mathcal{X}} \exp\left(\frac{\beta^2}{2} \sum_{i,j=1}^k \mathbb{E}[E(X_i)E(X_j)]\right)$$

$$= \sum_{X_1, \dots, X_k \in \mathcal{X}} \exp\left(\frac{\beta^2 n}{4} \sum_{i,j=1}^k \mathbf{1}\{X_i = X_j\}\right).$$

4 Overlap Representation and Counting

4.1 Overlap matrix and partitions

Notice that we sum over all k-tuples (X_1, \ldots, X_k) , where each $X_i \in \mathcal{X} = \{\pm 1\}^n$. Two elements X_i and X_j may coincide or differ, and the expression

$$\sum_{i,j=1}^{k} \mathbf{1}\{X_i = X_j\}$$

depends only on which configurations are the same.

We introduce the overlap matrix

$$\mathbf{Q}_{ij} = \mathbf{1}\{X_i = X_j\}, \quad 1 \le i, j \le k.$$

Q defines an equivalence relation on $\{1, \ldots, k\}$:

$$i \sim j$$
 iff $X_i = X_j$ (i.e. same on all n entries).

Let the number of distinct configurations among (X_1, \ldots, X_k) be r. Equivalently, the equivalence relation induced by \mathbf{Q} partitions the index set $\{1, \ldots, k\}$ into r disjoint subsets:

$$\{A_1,\ldots,A_r\}, \qquad A_1\sqcup A_2\sqcup\cdots\sqcup A_r=\{1,\ldots,k\}.$$

Note that to choose r distinct configurations from \mathcal{X} (of size 2^n), there are $\binom{2^n}{r}$ possible choices.

Let Q_r denote the set of all possible overlap matrices \mathbf{Q} that correspond to partitions with exactly r distinct equivalence classes. Thus we can write:

$$\mathbb{E}[Z^k] = \sum_{r=1}^k {2^n \choose r} \sum_{Q \in \mathcal{Q}_r} \exp\left(\frac{\beta^2 n}{4} \sum_{i,j=1}^k Q_{ij}\right).$$

5 Asymptotic Evaluation as $n \to \infty$

5.1 Large-n counting and overlap sizes

Assume that as $n \to +\infty$, the quantity

$$\frac{1}{n} \cdot \frac{1}{k} \log \mathbb{E}[Z^k]$$

is continuous in the variable k at k=0. We can then interchange limits in (\star) :

$$\lim_{n \to +\infty} \frac{1}{n} \mathbb{E}[\log Z] = \lim_{k \to 0} \lim_{n \to +\infty} \frac{1}{n} \cdot \frac{1}{k} \log \mathbb{E}[Z^k].$$

Let a_1, \ldots, a_r denote the sizes of the equivalence classes (so that $a_1 + \cdots + a_r = k$). Then:

$$\sum_{i,j=1}^k Q_{ij} = \sum_{j=1}^r a_j$$

Also note that as $n \to +\infty$:

$$\binom{2^n}{r} \approx \exp(nr \log 2).$$

Therefore, asymptotocally we can write:

$$\mathbb{E}[Z^k] \approx \sum_{r=1}^k \exp\left[n\left(r\log 2 + \frac{\beta^2}{4}\sum_{j=1}^r a_j^2\right)\right].$$

5.2 Dominant exponential

Finally, since the sum is dominated by its largest exponential term as $n \to +\infty$, we can replace the summation by the maximizer over both the number of equivalence classes r and the admissible (a_1, \ldots, a_r) :

$$\frac{1}{k} \cdot \frac{1}{n} \log \mathbb{E}[Z^k] \longrightarrow \frac{1}{k} \max_{\substack{1 \le r \le k \\ a_1 + \dots + a_r = k}} \left(r \log 2 + \frac{\beta^2}{4} \sum_{j=1}^r a_j^2 \right). \tag{*}$$

Observe that $\sum_{j=1}^{r} a_j^2$ is maximized when the mass is most uneven (one large block) and is minimized when the blocks are perfectly balanced. Hence, the two extreme cases are:

(i)
$$r = 1$$
: $\sum a_j^2 = k^2$,

(ii)
$$r = k : \sum a_j^2 = k$$
.

We want a trade-off between the terms:

• $r \log 2$: increases with r;

•
$$\frac{\beta^2}{4} \sum_{j=1}^r a_j^2$$
: decreases with r .

We approximate the balanced case by setting

$$a_j = \frac{k}{r}, \qquad j = 1, \dots, r.$$

Then

$$\sum_{j=1}^{r} a_j^2 = r \left(\frac{k}{r}\right)^2 = \frac{k^2}{r}.$$

Substituting into (\star) gives the asymptotic approximation

$$\frac{1}{k} \cdot \frac{1}{n} \log \mathbb{E}[Z^k] \approx \frac{1}{k} \max_{1 \le r \le k} \left(r \log 2 + \frac{\beta^2}{4} \frac{k^2}{r} \right).$$

6 Optimization over r

Now, we wish to maximize the function

$$f(r) = r \log 2 + \frac{\beta^2 k^2}{4r},$$

with derivatives

$$f'(r) = \log 2 - \frac{\beta^2 k^2}{4r^2}$$
 , $f''(r) = \frac{\beta^2 k^2}{2r^3} > 0$.

Therefore, f is a convex function and the maximization is over the closed interval [1, k]. The maxima happen at the boundaries:

•
$$f(1) = \log 2 + \frac{\beta^2 k^2}{4}$$
.

•
$$f(k) = k \log 2 + \frac{\beta^2 k}{4}$$
.

Hence, for $k \geq 1$, the asymptotic expression in (\star) gives

$$\frac{1}{k} \cdot \frac{1}{n} \log \mathbb{E}[Z^k] \approx \max \left\{ \frac{1}{k} \left(\log 2 + \frac{\beta^2 k^2}{4} \right), \log 2 + \frac{\beta^2}{4} \right\}$$

7 Replica Limit

7.1 Taking $k \to 0$

Recall that as part of the replica method, we now consider k < 1. We guess that instead of taking the maximum of f, we should take the minimum. Setting f'(r) = 0, we get:

$$r^* = \frac{\beta k}{2\sqrt{\log 2}}$$
 , $f^* = f(r^*) = \beta \sqrt{\log 2}$.

Therefore, we have 3 options:

$$\frac{1}{n}\mathbb{E}[\log Z] \approx \min\Big\{\frac{1}{k}\left(\log 2 + \frac{\beta^2 k^2}{4}\right), \log 2 + \frac{\beta^2}{4}, \beta\sqrt{\log 2}\Big\}.$$

Note that:

$$\frac{1}{k} \left(\log 2 + \frac{\beta^2 k^2}{4} \right) \to +\infty \quad , \quad k \to 0.$$

The two remaining expressions coincide at the critical point β_c

$$\log 2 + \frac{\beta_c^2}{4} = \beta_c \sqrt{\log 2} \quad \Longrightarrow \quad \beta_c = 2\sqrt{\log 2}.$$

Hence,

$$\frac{1}{n}\mathbb{E}[\log Z] = \begin{cases} \log 2 + \frac{\beta^2}{4}, & \text{if } \beta < \beta_c \text{ (high temperature),} \\ \beta\sqrt{\log 2}, & \text{if } \beta \ge \beta_c \text{ (low temperature).} \end{cases}$$

8 Consistency Checks

8.1 Jensen bound

By Jensen's inequality,

$$\frac{1}{n}\mathbb{E}[\log Z] \le \frac{1}{n}\log \mathbb{E}[Z] = \log 2 + \frac{\beta^2}{4},$$

which is the high-temperature case.

8.2 Slope check

Differentiating

$$\frac{1}{n}\log Z = \frac{1}{n}\log \sum_{X \in \mathcal{X}} \exp(\beta E(X))$$

with respect to β gives

$$\frac{d}{d\beta} \left(\frac{1}{n} \log Z \right) = \frac{1}{n} \frac{\sum_{X \in \mathcal{X}} E(X) \exp(\beta E(X))}{\sum_{X \in \mathcal{X}} \exp(\beta E(X))} = \frac{1}{n} \mathbb{E}[E(X)].$$

Since $E(X) \sim \mathcal{N}(0, n/2)$, we have

$$\mathbb{E}[E(X)] \le \max_{X \in \mathcal{X}} E(X) \approx n\sqrt{\log 2}.$$

This is consistent the slope $\sqrt{\log 2}$ of the low-temperature case.