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Lecture 4 : Solving the REM via Replica Method

1 Model and Definitions

Definition 1 (Random Energy Model). Let n € N and define the configuration space X = {£1}". For
each X € X, let E(X) be an independent random variable distributed as
n

E(X) ~ N(o, 5) .

For > 0 (inverse temperature), define the probability measure ps on X by

1

ps(X) = Z—ﬂexp(—ﬁE(X))-

Remark 1. Because the random variable E(X) is symmetric in distribution, i.e F(X) ~ —E(X), we can
write:

ps(X) = - exp(BE(X))
B
The goal is to compute
Ellog Zs] , Zs= ) exp(BE(X)).

Xex
Let {¢(X)} xex be ii.d. standard Gumbel random variables with mean ~y. Using the Gumbel trick :

E[log Zs] = B[ max{BE(X) + £(X)}] - 7.

By Jensen’s inequality,
Ellog Z5] < logE[Zs].
S—— ———

quenched annealed
2 Log as a Limit and Replica Identity

Recall that

pt1

/xpdx: p+1

log(z) +C, iftp=—1.

+C, if p# —1 (power rule),

Informally, we can view log x as the limiting case of the power rule. Set k:=p+1 (sok — 0asp — —1).

Then
SCp+1 -1 eklogac -1

p+1 &k

Use the Taylor series of the exponential around 0:

eFlos” o~ 1 4 klog z.



Therefore,

k _ ek log x
lim = lim = logx.
k—0 k—0
This can also be derived by
k klogx d k klogx k
¥ =e = —a"=e logx = 2" log x.
dk
Evaluating at £ = 0 gives
— = logx
T P

which is consistent with the limit representation above.

Lemma 1. Let X be a well-behaved random variable. Then

1
Elog X] = lim - log E[X*].

Proof. Use the identity X* = eklog X,
1
E[X*] = E[eF¢¥] <= E[X*] = - log E[X*].

Since E[e*!°¢X] is differentiable at k& = 0 and E[e"!°¢X] = 1, we have

d E[X*log X]
ogE[X*]| === 2520 _ miog X7
dkc og [ ] o ]E[Xk] =0 [Og ]

Hence,
1 K
Eflog X] = }Clir(l)z log E[X"].

We now apply lemmal/[l] to Zs:
o1
Ellog Zs] = lim - log E[Z}).

Therefore, it remains to compute E[Z}].

3 Replica Method: Integer Moments

The key idea of the replica method is to first compute E[Zg] for integer £ > 1, and then to extend k from
the integers to real values near 0.

For notation purposes, let Z := Z3.



3.1 Remark on the Moment Problem

In general, the moments E[Z*] for k > 0 do not always uniquely determine the distribution (this is the
moment problem). It is related to existence of the moment generating function (see Carleman’s condition).
For example:

f(x) =e7® has Mx(t) < oo for t in a neighborhood of 0,

whereas
flz) = e "% has Mx(t) = oo for all t > 0 (tails are too heavy).

Likewise, the former distribution is determined by its moments but the latter is not. In the context of
the replica method, Z is a sum of terms of the form e“, with G a gaussian. Therefore Z does not have a
moment-generating function, since

E[¢*°] = 0o for any k > 0

Hence, the values of E[Z*] at integer k likely do not determine the distribution uniquely (but in practice,
the replica method works nonetheless).

3.2 Replica Expression

We are interested in the limit
1 1 1
lim —E[logZ] = lim lim — - ElogE[Zk]. (1)

n—+oo N n—+oco k—0 N

We first compute for integer k£ > 1:

E[Z"] = E <Zexp(ﬁE(X))> = 3 E[exp(BE(X) + -+ E(XY))].

Xex X1,eeey XpeX

Let E = (E(X1), E(X,), ... ,E(Xk))T. By assumption, the random variables { F(X;)}¥_, are independent,
centered Gaussian random variables. Hence, their covariance matrix 3 € R*** is diagonal such that

n
For any a € R¥, the moment generating function is:
T L+
E[exp(a E)} = exp(ia Ea) .

Taking a = $1;, we obtain:

w



4 Overlap Representation and Counting

4.1 Overlap matrix and partitions

Notice that we sum over all k-tuples (X7, ..., Xj), where each X; € X = {£1}". Two elements X; and X
may coincide or differ, and the expression
k

> 1{X =X}

i,j=1

depends only on which configurations are the same.

We introduce the overlap matriz
Q,=1{X;=X,;}, 1<ij<k
Q defines an equivalence relation on {1,..., k}:
i~j iff X; =X, (ie. same on all n entries).

Let the number of distinct configurations among (X7, ..., X)) be r. Equivalently, the equivalence relation
induced by Q partitions the index set {1,...,k} into r disjoint subsets:

{Ay,... A}, AfUA U A ={1,... k}.
2n
Note that to choose r distinct configurations from X (of size 2"), there are ( ) possible choices.
r

Let O, denote the set of all possible overlap matrices Q that correspond to partitions with exactly r
distinct equivalence classes. Thus we can write:

Z (2> 3 exp<@ 5 @ij) |

=1 QeQ, ij=1
5 Asymptotic Evaluation as n — oo

5.1 Large-n counting and overlap sizes

Assume that as n — +00, the quantity
1 1
— - —logE[Z"
7 logE[Z7]
is continous in the variable k£ at kK = 0. We can then interchange limits in (ED:

1 1 1
lim —E[logZ] =lim lim — %logE[Zk].

n—4+oo N k—=0n—+oc0 N

Let aq, ..., a, denote the sizes of the equivalence classes (so that a; + - -+ a, = k). Then:

k T
> Q=) 4

i,j=1 J=1

2n
( > ~ exp(nrlog2).

Also note that as n — +oo:

,
Therefore, asymptotocally we can write:

E[Z¥] ~ Zexp [n(rlog?—i— %iai)] :

r=1 j=1
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5.2 Dominant exponential

Finally, since the sum is dominated by its largest exponential term as n — 400, we can replace the

summation by the maximizer over both the number of equivalence classes r and the admissible (ay, ..., a,):
L1 E[Zk]—>1 log 2 + QET:? (%)
Eoal P (22 )
a1+-+ar= J=

Observe that Z;Zl ajz» is maximized when the mass is most uneven (one large block) and is minimized
when the blocks are perfectly balanced. Hence, the two extreme cases are:

i)yr=1: Za?:k2,
(i)yr==k: Za?zkz.

We want a trade-off between the terms:

e rlog?2 : increases with r;

° — E a? : decreases with r.

Then . )
Sat=r(r) =%
CL] =T - — T .
: r r
j=1
Substituting into @ gives the asymptotic approximation
1 1

1 B2 k?
—_. — k ~ f— —_—
k nlOgE[Z] klr2%<rlog2+ 4 r)'

6 Optimization over r

Now, we wish to maximize the function

2k2
f(r)=rlog2+ 64r ;
with derivatives 322 B2)2
f'(r)=1log2 — I f'(r) = 9,3 > 0.

Therefore, f is a convex function and the maximization is over the closed interval [1,%]. The maxima
happen at the boundaries:
ﬁQ k2

e f(1)=log2+ 1

2k
Hence, for k > 1, the asymptotic expression in @ gives
1 [2k?

1 . 1 2
7 ElogE[Z | ~ max{E <log2+ T) ,log2+z}
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7 Replica Limit

7.1 Taking £k — 0

Recall that as part of the replica method, we now consider k£ < 1. We guess that instead of taking the
maximum of f, we should take the minimum. Setting f'(r) = 0, we get :

L f £ — Bl D
T—W R f—f(?“)—ﬂ 10g2

Therefore, we have 3 options :

1 ) 1 62]{:2 52
—Ellog Z] ~ mm{E log 2 + ) log 2 + R B\/logQ}.
n

Note that :

k 4

The two remaining expressions coincide at the critical point [,

1 2k
—(log2+ﬁ )—>+oo , k—0.

2
10g2+%:60\/10g2 = f[.=2y/log2.

Hence,
2

log 2 + %, if 5 < . (high temperature),

1
—E[log Z] =
n

Bv/1og 2, if > B. (low temperature).

8 Consistency Checks

8.1 Jensen bound

By Jensen’s inequality,

1 1 82
—Ellog Z] < —logE[Z] = log2 + —,
n n 4

which is the high-temperature case.

8.2 Slope check

Differentiating
1

ﬁlogZ = %log Z exp(BE(X))

XeXx

with respect to ( gives

ap
Since E(X) ~ N(0,n/2), we have

! (Logi) = 1 Ex BOOOIOBN) 1y

no Y xex eXp(BE(X)) n

E[E(X)] < max E(X) ~ n4/log 2.

XekXx

This is consistent the slope /log 2 of the low-temperature case.
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