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Rigorous REM solution and Concentration

1 Rigorous Calculation from REM

First recall the definition of the restricted energy model (REM). For x € {£1}" and an inverse temperature
parameter 8 > 0, we have
Lid. n 1
B(z) % N (0,2), pale) = - exp (BE())
2 Zs
where the normalizing constant (also called partition function)
Zs= Y exp(BE(x))

ze{£1}m

makes pg into a probability distribution. We previously computed (nonrigorously, using the replica trick)
that as n — oo,

log 2 + %2 B < B, (high temperature)
BVlog2 > . (low temperature)
where (5. = 24/log 2 is the threshold between the two regimes. Now, we will rigorously prove that

~log Z5 = 4(6) ={

"log Zs = () + o(1)

by demonstrating lower and upper bounds.

1.1 Upper Bounds
We will first demonstrate that )
LB llog 2] < w(8) + o(1).

For the high temperature regime, we have that by Jensen

Ellog Zs] < logE[Zs] =log | 3 Elexp(8E(x))] | = log <2n - exp (”752» S (logQ + %2) .

ze{£1}"

And in the low temperature case, we have that taking a derivative yields that

0 B D werry Elx) exp(BE(x)) B
op 08 %6 = Y weqzyn XP(BE(2) Bonps | E()] < selii}n Elw).

Taking an expectation (and interchanging derivative and integral) yields

01 1
- <= -
95 nE[log Zg] < nE Lg{lff}" E(x)] log2 + o(1)

since the supremum of 2" many independent standard Gaussians is on the order of y/2log 2" = {/2nlog 2,
and we have that each F(x) is i.i.d. N'(0,n/2). Combining the bounds in the two regimes we have that

LEllog Z5] < $:(8) + o(1).

n

1



1.2 Lower Bounds

In the low temperature regime, consider that

log Z5 = log Z exp(GE(z)) Zlog( max exp(ﬁE(x))) = max [FE(z)

vef{il)n ze{£1}" ze{£1}"

and so in turn .
Ellog Zg] > B+/log2 + o(1).

n
The high temperature case is harder. We first note that

P(E(z) € [na,n(a+€)]) = \/LQ_TF /an exp (—%) dx

(67

and so, under Binomial-Poisson approximation,

X

n n(a+te) 2
{x e {£1}" | E(x) € [na,n(a + €)]}| = Poisson (\/2% , exp (—%) dx) .

Now consider that by approximating f:ogaﬂ) exp(—x?/n)dz = neexp(—na?) we arrive at

1 on  [rlate) z2 )
—lo exp| ——|dz | =log2 — a* + o(1).
Rl Gvo=4 p< n) g (1)

Llog |z | E(z = na)

log2 — a?

~log2 Viog2

Figure 1: The number of 2 € {£1}” such that F(x) =~ na is (up to exponential accuracy) exp(n(log2 — «?)).

Then,
Zg= Y exp(BE(x)) > |{x € {£1}" | E(x) > na}| - exp(Bna)
ze{£l1}n
SO 1
—log Zs > Ba +log2 — o + o(1)
n

whereby taking oo = [5/2 yields
2

1
—log Zs > log2—|—% +o(1)
n

as desired.



1.3 Concentration

Above, we have proved bounds on E[log Z3]; to conclude we therefore need to show that log Zs concentrates
well, i.e. £log Zs — E[log Zg]. To do this, we first introduce an inequality which we will justify later.

Theorem 1 (Poincaré’s Inequality). For Z ~ N (0,021,,) and f : R™ — R differentiable, we have
Var(f(2)) < o’E[|V(Z)]3).
Granting the above, we have that

2
n n
Var(log Z) < SB[V elos Zsf3) < "~

and so . e . . 8
Var | —logZs | < — = —logZs—E |—-logZs| =0p | — | .
o (n) <5 = s -2 [fucr] -0 ()
This fact, combined with the bounds in the previous sections, establishes that

lim ~ log Z5 = (8)

n—oo 1

as desired.

2 Hermite Polynomials

To prove Poincaré’s Inequality, we first quickly develop some basic theory of the (probabilist’s) Hermite
polynomials.

Definition 1. We say that a collection of polynomials {p, }2,, with deg(p,) = n, is an orthogonal basis
of L?(u) if
Exteplpn(X)pn(X)] =0 <= n £ m

and
Span(p07plap2a cee ) - Span(la Zlf,l'Q, cee )
We say that it is orthonormal if for all n € N,
EXNM[pn(X)Z] =1L
We now introduce our premier example of such an orthogonal basis:

Definition 2. The probabilist’s Hermite polynomials are defined by

dr 2
He,, _ _1nx2/2 v —x/2 )
en(z) = (—1)"e (d:c”e
The first few polynomials are:
Heo(x) =1
Hei(z) =z
Hey(z) = 2% — 1



and so on. One useful identity about the Hermite polynomials will be their relation to the exponential
generating function e~**/2. Specifically, write the Taylor expansion

Z _(z=t)* t)2 t"
atn € eon!
and note that by symmetry
n )2 n )2
8_6_< ) _(—1) 0 JCES
otr ox™
SO
20" w2 " =0 2 tn
2 ot P
and, multiplying by e, we get that
& n
to—t2/2 _ He, (z)t
e = _—
HZ:O n!

We may now check that the Hermite polynomials are orthogonal.

Lemma 1. Let Z ~ N (0,1). Then

nl n=m
E[He,(Z)He,,(Z)] = {0 otherwise

Proof. We use the generating function identity. First, note that

)n

n!

E [etZ—t2/2652—52/2] _ ]E[B(S—H)Z] T Z

n=0

since E[e(T)7] = e(s+1°/2 follows from the formula for the MGF of a standard Gaussian. On the other

hand, we have that
=\ He(2)t" =\ He(Z)s"
() (S

n=0 n=0

E etZ—tQ/QesZ—32/2:| —E

=, E[He,(Z)He,(Z
_ Z € € ( )]tnsm

nlm)!
n,m=0

so we get what we want by matching terms in the power series. [

The above (and some more facts about the Hermite polynomials), combined with the following approx-
imation fact which we will take for granted, will let us demonstrate Poincaré’s identity.

Theorem 2. Let Z ~ N(0,1) and f be a function such that E[f(Z)?] < oo; then for al ¢ > 0, there is
some polynomial p. such that

E[(f(Z) = p(Z))’] < e.
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