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Rigorous REM solution and Concentration

1 Rigorous Calculation from REM
First recall the definition of the restricted energy model (REM). For x ∈ {±1}n and an inverse temperature
parameter β > 0, we have

E(x)
i.i.d.∼ N

(
0,
n

2

)
, pβ(x) =

1

Zβ

exp (βE(x))

where the normalizing constant (also called partition function)

Zβ =
∑

x∈{±1}n
exp(βE(x))

makes pβ into a probability distribution. We previously computed (nonrigorously, using the replica trick)
that as n→ ∞,

1

n
logZβ → ψ(β) =

{
log 2 + β2

4
β ≤ βc (high temperature)

β
√
log 2 β > βc (low temperature)

where βc = 2
√
log 2 is the threshold between the two regimes. Now, we will rigorously prove that

1

n
logZβ = ψ(β) + o(1)

by demonstrating lower and upper bounds.

1.1 Upper Bounds
We will first demonstrate that

1

n
E [logZβ] ≤ ψ(β) + o(1).

For the high temperature regime, we have that by Jensen

E[logZβ] ≤ logE[Zβ] = log

 ∑
x∈{±1}n

E[exp(βE(x))]

 = log

(
2n · exp

(
nβ2

4

))
= n

(
log 2 +

β2

4

)
.

And in the low temperature case, we have that taking a derivative yields that

∂

∂β
logZβ =

∑
x∈{±1}n E(x) exp(βE(x))∑

x∈{±1}n exp(βE(x))
= Ex∼pβ [E(x)] ≤ max

x∈{±1}n
E(x).

Taking an expectation (and interchanging derivative and integral) yields
∂

∂β

1

n
E[logZβ] ≤

1

n
E
[

max
x∈{±1}n

E(x)

]
=
√
log 2 + o(1)

since the supremum of 2n many independent standard Gaussians is on the order of
√
2 log 2n =

√
2n log 2,

and we have that each E(x) is i.i.d. N (0, n/2). Combining the bounds in the two regimes we have that
1

n
E[logZβ] ≤ ψ(β) + o(1).
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1.2 Lower Bounds
In the low temperature regime, consider that

logZβ = log

 ∑
x∈{±1}n

exp(βE(x))

 ≥ log

(
max

x∈{±1}n
exp(βE(x))

)
= max

x∈{±1}n
βE(x)

and so in turn
1

n
E[logZβ] ≥ β

√
log 2 + o(1).

The high temperature case is harder. We first note that

P(E(x) ∈ [nα, n(α + ϵ)]) =
1√
2π

∫ nα+1

nα

exp

(
−x

2

n

)
dx

and so, under Binomial-Poisson approximation,

|{x ∈ {±1}n | E(x) ∈ [nα, n(α + ϵ)]}| ≈ Poisson

(
2n√
2π

∫ n(α+ϵ)

nα

exp

(
−x

2

n

)
dx

)
.

Now consider that by approximating
∫ n(α+ϵ)

nα
exp(−x2/n)dx ≈ nϵ exp(−nα2) we arrive at

1

n
log

(
2n√
2π

∫ n(α+ϵ)

nα

exp

(
−x

2

n

)
dx

)
= log 2− α2 + o(1).

−
√
log 2

√
log 2

log 2− α2

1
n
log |x | E(x ≈ nα)|

Figure 1: The number of x ∈ {±1}n such that E(x) ≈ nα is (up to exponential accuracy) exp(n(log 2− α2)).

Then,
Zβ =

∑
x∈{±1}n

exp(βE(x)) ≥ |{x ∈ {±1}n | E(x) ≥ nα}| · exp(βnα)

so
1

n
logZβ ≥ βα + log 2− α2 + o(1)

whereby taking α = β/2 yields
1

n
logZβ ≥ log 2 +

β2

4
+ o(1)

as desired.
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1.3 Concentration
Above, we have proved bounds on E[logZβ]; to conclude we therefore need to show that logZβ concentrates
well, i.e. 1

n
logZβ → 1

n
E[logZβ]. To do this, we first introduce an inequality which we will justify later.

Theorem 1 (Poincaré’s Inequality). For Z ∼ N (0, σ2In) and f : Rn → R differentiable, we have

Var(f(Z)) ≤ σ2E[|∇f(Z)|22].

Granting the above, we have that

Var(logZβ) ≤
n

2
E[|∇E logZβ|22] ≤

nβ2

2

and so
Var

(
1

n
logZβ

)
≤ β2

2n
=⇒ 1

n
logZβ − E

[
1

n
logZβ

]
= OP

(
β√
2n

)
.

This fact, combined with the bounds in the previous sections, establishes that

lim
n→∞

1

n
logZβ = ψ(β)

as desired.

2 Hermite Polynomials
To prove Poincaré’s Inequality, we first quickly develop some basic theory of the (probabilist’s) Hermite
polynomials.

Definition 1. We say that a collection of polynomials {pn}∞n=0, with deg(pn) = n, is an orthogonal basis
of L2(µ) if

EX∼µ[pn(X)pm(X)] = 0 ⇐⇒ n ̸= m

and
span(p0, p1, p2, . . . ) = span(1, x, x2, . . . ).

We say that it is orthonormal if for all n ∈ N,

EX∼µ[pn(X)2] = 1.

We now introduce our premier example of such an orthogonal basis:

Definition 2. The probabilist’s Hermite polynomials are defined by

Hen(x) = (−1)nex
2/2

(
dn

dxn
e−x2/2

)
.

The first few polynomials are:

He0(x) = 1

He1(x) = x

He2(x) = x2 − 1
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and so on. One useful identity about the Hermite polynomials will be their relation to the exponential
generating function etx−t2/2. Specifically, write the Taylor expansion

e−(x−t)2/2 =
∞∑
n=0

∂n

∂tn
e−

(x−t)2

2

∣∣∣∣
t=0

tn

n!

and note that by symmetry
∂n

∂tn
e−

(x−t)2

2 = (−1)n
∂n

∂xn
e−

(x−t)2

2

so
∞∑
n=0

∂n

∂tn
e−

(x−t)2

2

∣∣∣∣
t=0

tn

n!
=

∞∑
n=0

∂n

∂xn
e−

x2

2
tn

n!

and, multiplying by ex2 , we get that

etx−t2/2 =
∞∑
n=0

Hen(x)t
n

n!
.

We may now check that the Hermite polynomials are orthogonal.

Lemma 1. Let Z ∼ N (0, 1). Then

E[Hen(Z)Hem(Z)] =

{
n! n = m

0 otherwise
.

Proof. We use the generating function identity. First, note that

E
[
etZ−t2/2esZ−s2/2

]
= E[e(s+t)Z ]e−

t2

2
− s2

2 = est =
∞∑
n=0

(ts)n

n!

since E[e(s+t)Z ] = e(s+t)2/2 follows from the formula for the MGF of a standard Gaussian. On the other
hand, we have that

E
[
etZ−t2/2esZ−s2/2

]
= E

[(
∞∑
n=0

He(Z)tn

n!

)(
∞∑
n=0

He(Z)sn

n!

)]

=
∞∑

n,m=0

E [Hen(Z)Hem(Z)]

n!m!
tnsm

so we get what we want by matching terms in the power series.

The above (and some more facts about the Hermite polynomials), combined with the following approx-
imation fact which we will take for granted, will let us demonstrate Poincaré’s identity.

Theorem 2. Let Z ∼ N(0, 1) and f be a function such that E[f(Z)2] < ∞; then for al ϵ > 0, there is
some polynomial pϵ such that

E[(f(Z)− pϵ(Z))
2] ≤ ϵ.
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