
STAT 33612 Autumn 2025 Scribe: Samuel Lurvey
October 16, 2025 Lecturer: Frederic Koehler
These notes have not received the scrutiny of publication. They could be missing important references, etc.

Properties of Hermite Polynomials, Proving the Poincaré Inequality

1 Hermite Expansion

Recap.
Last lecture, we briefly defined the Hermite polynomials, a set of orthogonal polynomials which serve as
an orthogonal basis for L2(µ). Since polynomials are dense in L2(µ), writing functions in terms of Hermite
polynomials will allow us to easily prove the Poincaré inequality.

Recall that

Hen(x) = (−1)nex
2/2[

dn

dxn
e−x2/2], He0(x) = 1 (1)

We’ll need the generating function identity for hermite polynomials:

etx−
x2

2 =
∞∑
n=0

Hen(x)

n!
tn (2)

We could also generate them by induction or Equation (2), but starting with (3) will make proving what
follows easier.

Basic Properties of Hermite Polynomials
We prove the following three properties of Hermite Polynomials:

1. Orthogonality: EZ∼N(0,1)[Hen(z)Hem(z)] =

{
0, if n ̸= m.

n!, if n = m.

2. Inductive Formula: Hen+1(x) = xHen(x)− nHen−1(x)

3. Derivative Formula: He′n(x) = nHen−1(x)

Proof of 1.

E[etz−
t2

2 esz−
s2

2 ] =
∑
n,m

E[Hen(z)Hem(z)]tnsm

n!m!

E[etz−
t2

2 esz−
s2

2 ] = e−
t2

2
− s2

2 E[e(t+s)z] = e−
t2

2
− s2

2 e
(t+s)2

2 = ets =
∑
n

(ts)n

n!

Where in the third step we used the fact that the moment generating function of a N(0, 1) distribution

is E[etz] = e
t2

2 .
Matching powers of t and s, we see that for n ̸= m, E[Hen(z)Hem(z)] must be 0, while for n = m,

E[Hen(z)Hem(z)] must equal n!, which is the desired result.
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Proof of 2.
∂

∂t

∞∑
n=0

Hen(x)t
n

n!
=

∞∑
n=1

nHen(x)t
n−1

n!
=

∞∑
n=1

Hen(x)t
n−1

(n− 1)!
=

∞∑
n=0

Hen+1(x)t
n

(n)!

∂

∂t

∞∑
n=0

Hen(x)t
n

n!
=

∂

∂t
etx−

t2

2 = (x− t)etx−
t2

2 = (x− t)
∞∑
n=0

Hen(x)t
n

n!
=

∞∑
n=0

xHen(x)t
n

n!
−

∞∑
n=1

nHen−1(x)t
n

(n)!

So
∞∑
n=0

Hen+1(x)t
n

(n)!
=

∞∑
n=0

xHen(x)t
n

n!
−

∞∑
n=1

nHen−1(x)t
n

(n)!

Again matching coefficients, we see that

{
Hen+1(x) = xHen(x)− nHen−1(x), n ≥ 1

Hen+1(x) = xHen(x), n = 0
, which is the

desired result.

Proof of 3.

∂

∂x

∞∑
n=0

Hen(x)t
n

n!
=

∞∑
n=0

He′n(x)t
n

n!
=

∂

∂x
etx−

t2

2 = tetx−
t2

2 =
∞∑
n=0

Hen(x)t
n+1

n!
=

∞∑
n=1

Hen−1(x)t
n

(n− 1)!

Matching coefficients one last time, we see that He′n(x) = nHen−1(x) ∀n ≥ 1 which is the desired
result.

Three Brief Notes

1. We also can define normalized Hermite Polynomials hn(x) = Hen(x)√
n

. These are, unsurprisingly,
orthonormal rather than just orthogonal.

2. The fact that we have such a convenient formula for getting Hen−1(x) from Hen(x) in the form of the
derivative formula inspires the question of whether there is a convenient formula for getting Hen(x)
from Hen−1(x). Of course there is, as we can plug the derivative formula into the induction formula
to get Hen+1(x) = (x− d

dx
)Hen(x).

3. deg(Hen(x)) = n. This can clearly be seen from the induction formula and the derivative formula,
along with the definition He0(x) = 1. By the derivative formula, when we go from n to n− 1 we take
a derivative which reduces the degree by 1. Meanwhile, by the induction formula when we go from
n− 1 to n we multiply by x which increases the degree by 1. The induction formula and definition of
He0(x) are sufficient: Since we know that deg(He0(x)) = 0 and that deg(Hen(x)) = deg(Hen−1(x))+1,
it is clear by induction that deg(Hen(x)) = n.

Creation and Annihilation Operators
The fact that we have formulas which allow us to go up and down the “ladder” of Hermite Polynomials

inspires the use of Creation and Annihilation Operators. These are used a lot in Quantum Mechanics and
QFT. They are defined as follows:

A =
d

dx
, A† = x− d

dx

as shown above, they obey the following formulas:

Ahn =
√
nhn−1, A†hn =

√
n+ 1hn+1

Multivariate Hermite Polynomials
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One can easily define multivariate Hermite Polynomials, which take on values in Rd rather than R, as
follows:

Hα(x) =
d∏

i=1

hαi
(xi), α ∈ Nd

So for example, H(2,1)(x1, x2) = h2(x1)h1(x2)
Fact: Hα is an orthonormal basis for polynomials in x1,...,xd. Polynomials are dense in gaussian spaces,

so orthonormal basis for all functions is not hard to check.
We are ready to prove the Poincaré inequality!

2 Proof of the Poincaré inequality

First we recall the Poincaré inequality.

Theorem 1 (Poincaré inequality). Let f be differentiable, Z ∼ N(0, σ2In). Then

Var(f(Z)) ≤ σ2E[|∇f |22

Example 1. Let f(z) = z. Then Var(f(z)) = Var(z) = σ2, while σ2E[|∇f |22] = σ2. The inequality is tight
in this case. In particular, it is clear that the inequality is tight when f is any linear function of z.

We now need one more piece of background:

Since hermite polynomials are a basis for polynomials, we can write f as f(x) =
∑

α∈Nd f̂(α)Hα(x) (in L2).

We use the hat because this is like a fourier transform, for which the convention is to use hats. The f̂(α)
are referred to as fourier coefficients or hermite coefficients.

Proof of the Poincaré inequality.

Var(f) = Cov(
∑
α

f̂(α)Hα,
∑
β

f̂(β)Hβ)

Since H(0,0,...,0) is constant in z, we can drop the α = (0, 0, ..., 0) and β = (0, 0, ..., 0) terms from the
sums. We define |α| =

∑
i αi.

Var(f) = Cov(
∑
α

f̂(α)Hα,
∑
β

f̂(β)Hβ) = Cov(
∑
|α|≥1

f̂(α)Hα,
∑
|β|≥1

f̂(β)Hβ)

=
∑
|α|≥1

∑
|β|≥1

f̂(α)f̂(β)Cov(Hα,Hβ) =
∑
|α|≥1

∑
|β|≥1

f̂(α)f̂(β)E(HαHβ) =
∑
|α|≥1

|f̂(α)|2

Where in the second to last equality we used that E[Hα] = 0 unless α = (0, 0, ..., 0). This can be shown
easily: E[Hα] = E[Hα H(0,0,...,0)] = 0 if α ̸= 0 by the orthogonality of Hermite Polynomials.

This equality Var(f) =
∑

|α|≥1 |f̂(α)|2 is known as the Plancherel Theorem/Parseval’s Identity, and
applies to fourier series as well.

To find ∇f , we first find ∂
∂xi

f .

∂

∂xi

f =
∂

∂xi

∑
α∈Nd

f̂(α)Hα(x) =
∑

α∈Nds.t.αi≥1

f̂(α)
∂ Hα(x)

∂xi
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∂ Hα(x)

∂xi

= (
∏
i ̸=j

hαj
)
∂hαi

(xi)

∂xi

= (
∏
i ̸=j

hαj
)
√
αihαi−1 =

√
αi Hα−ei

where ei is a vector full of 0’s with a 1 in the ith coordinate.

∂

∂xi

f =
∑

α∈Nds.t.αi≥1

f̂(α)
∂ Hα(x)

∂xi

=
∑

α∈Nds.t.αi≥1

f̂(α)
√
αi Hα−ei

E[|∇f |22] = E[
∑
i

| ∂f
∂xi

|2] =
∑
i

E[(
∑
α

f̂(α)
√
αi Hα−ei)

2] =
∑
i

∑
α

αi|f̂(α)|2

=
∑
α

|f̂(α)|2
∑
i

αi =
∑
α

|f̂(α)|2|α| =
∑

αs.t.|α|≥0

|f̂(α)|2|α|

Since the sum is over α s.t.|α| ≥ 0, |α| ≥ 1 for every term. Thus, because of that and the fact that
|f̂(α)|2 ≥ 0 |f̂(α)|2 ≥ 0, E[|∇f |22] =

∑
αs.t.|α|≥0 |f̂(α)|2|α| ≥

∑
αs.t.|α|≥0 |f̂(α)|2 = Var(f).

While we only proved this for differentiable functions, it can be extended to Lipschitz/more general
functions with some additional effort. As stated before, the two sides become equal for any linear function
of z, since then |α| = 1, which follows since otherwise the degree of f will be greater than 1.

Remark 1. Suppose Var(f) = 1,E[f ] = 0. Then
∑

α |f̂(α)|22 = 1, and E[|∇f |22] =
∑

|α|≥1 |f̂(α)|22|α| can
be interpreted as providing a probability |f̂(α)|22 of finding the function in each α, or in other words as the
probability of finding the function with some level of smoothness. This can be made more precise, with
the sum being E[α] under some probability distribution.

One can understand the connection between α and smoothness by looking at the graphs of the “Hermite

functions”, defined by multiplying by e−
x2

4 (Up to scaling), which allow us to see the behavior of the
Hermite polynomials while ignoring their tail behavior.

(a) n = 1 (b) n = 4 (c) n = 50

Figure 1: Probabilists’ Hen(x) e
−x2/4 for n = 1, 4, 50.

Informal Statement:
Functions supported only on small α (For example, |α| ≤ D are as “smooth” as degree D polynomials.

3 Side Remarks and Complexity Theory

Question. A key question in modern average-case complexity theory: for some random variable such as
Z ∼ N(0, In) or {±1}n and f : Rn → R, when is f(Z) “typically fast to calculate”?
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Example 2 (Pure p-spin model / Random p-degree optimization).

compute (f1(x), ..., fn(x)) ≈ argmax
x∈{±1}n

∑
([n]

p )

gαx
α, gα ∼ N(0, 1)

Here, the sum is over all subsets of indices of size p. The equality is not exact because we are interested
in understanding the ability to compute approximate rather than exact minimizers/maximiers (note that
the problems of minimizing/maximizing are equivalent).

When can we compute x ⊂ {±1}n s.t. p(x) = (1 + o(1))maxy∈{±1}n
∑

α gαy
α in poly(n) time?

It is believed (Gamarnik, Jagannath, Wein, 2020) that

� For p even if p = 2, it’s possible (Already shown by Andrea Montanari before their paper)

� For p even if p ≥ 4, it’s not possible

What is the “evidence”? They present the heuristic argument that this is true for low degree polynomials.
The proof is based on a type of physics-inspired landscape analysis technique called “overlap gap”.

We saw a version of this property in low-temp (large β) random energy models. In these models
maxx∈{±1}n E(x) is a random variable itself (here E(x) is the energy of state x, not its expected value).
The number of approximate maximizers of E(x) is Poisson with some parameter determined by the model.
The approximate maximizers will in general be far away from each other, since their locations are given
by uniform sampling without replacement on the cube.
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