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Random Matrix Theory I

1 Top Eigenvalue Problem

Consider a matrix J € R™" with J;; = Jj;, Ji; ~ N(0,2) and J;; ~ N(0,2). J is called a GOE matrix.
In these next two lectures, we aim to use the Replica method to compute Ayax(J), which we can formulate
as an optimization problem via:

max (z, Jx)

[lz]l2=1
We will use slightly informal arguments for some calculations, without providing additional details, since
we are anyway not doing a fully rigorous proof in the sense of math.

1.1 Warmup: Surface Area of High-Dimensional Spheres

As a warmup, we compute log SA(y/nS"!) to leading order. This calculation will illustrate an informal
idea related to “equivalence of ensembles” in statistical mechanics. We recall some facts:

1. Gaussian integrals:
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2. Poincaré’s inequality:
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3. If v ~ N(0, 1,,), ||z]|3 ~ x%(n), so the typical size of ||z||z is v/n
4. “Equivalence of Ensembles”: Say x ~ N(0, I,,). We rewrite it as:
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—”;”2 is a unit-norm direction vector on S"!, and ||z||2 & y/n. So therefore:

x ~ N(0,1,) is approximated as Unif(y/nS" 1)
and N(0, I,,) ~ Unif(y/nS™1).

Remark 1. The Gaussian pdf o< e 1#12/2 can be interpreted as e PH®) with 8 = 1 and H(z) = Hw2||§.

Informally, the inverse temperature /3 plays the role of a “Lagrange multiplier” which enforces H(x) ~ n/2.
See a textbook for more explanation.

With these facts:

log SA(v/nS" 1) = log/ ldr ~ log/ e I#l15/26n/2 go
lzlla=vn (]| 2/n



where we approximated 1 ~ e~ 17" /2¢™/2 because ||z]|; ~ /0. Since ||z||; is concentrated about /7,
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log SA(v/nS" 1) ~ log/ e 1132672 gy = Jog(2me)™? = glog(Qwe)

So therefore: . .
lim —log SA(y/nS™ ') = 510g(27re)
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1.2 Heuristics of \,.(J) via Replica Calculation
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The equality in (x) is non-trivial to see, and might show up on the homework. We claim that the integral
in the expectation concentrates. Via Poincaré’s inequality,
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By direct calculation,
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Thus,
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So the integral concentrates. Now for the Replica trick:
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2. Take a high-dimensional limit:
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The second equality is a guess (i.e., not fully justified).

3. Now, we guess the formula for lim,, . # log E[Z*] for k = 0 from a formula for k € Z. Let i be the
uniform measure on /nS™"!. Then:
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By independence, the expectation factors out, and we can identify each expectation with the MGF
of a Gaussian:
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Therefore the integral becomes:
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Now we can identify with the overlap matrix @Q;; where Q € R*** and the integral becomes
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where

n
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We now claim that lim,, @ = %log det (). We will make the following Gaussian approximation
using the “equivalence of ensembles” as before:

Q
Unif({(xl,--- ,x,) € R . <“""7’ff> = Qij}) ~N(0,%) where %= € Rk

and Qij S [—1, 1] Thus,
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The surface area term is a normalizing factor from the definition of x (i.e. normalizing factor integral
on \/nS" 1), and % ~ @E—y by Concentratlonl Continuing on,

= nlog ((2me)*?(det Q)'/?) — klog SA(v/nS"™)
= %k log(2me) + glog det Q — klog SA(yv/nS™1)

= g log det )

IThis is the same idea as before, by Poincaré’s inequality, using that ¥ ~1/2y is a standard Gaussian in nk dimensions.



Therefore,
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1.3 Replica Symmetric Ansatz

Note that (x;,z;) = (xj,z;), and the the Gibbs measure concentrates about the top eigenvalue, so a
reasonable guess for the () that maximizes this expression is the replica symmetric ansatz:

1 q q ... q_
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Q=19 ¢ 1 q| € R¥*k q € [0,1]
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and the expression becomes:
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We will continue this computation next lecture by finding g.



	Top Eigenvalue Problem
	Warmup: Surface Area of High-Dimensional Spheres
	Heuristics of (J) via Replica Calculation
	Replica Symmetric Ansatz


