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Random Matrix Theory I

1 Top Eigenvalue Problem

Consider a matrix J ∈ Rn×n with Jij = Jji, Jij ∼ N (0, 1
n
) and Jii ∼ N (0, 2

n
). J is called a GOE matrix.

In these next two lectures, we aim to use the Replica method to compute λmax(J), which we can formulate
as an optimization problem via:

max
∥x∥2=1

⟨x, Jx⟩

We will use slightly informal arguments for some calculations, without providing additional details, since
we are anyway not doing a fully rigorous proof in the sense of math.

1.1 Warmup: Surface Area of High-Dimensional Spheres

As a warmup, we compute log SA(
√
nSn−1) to leading order. This calculation will illustrate an informal

idea related to “equivalence of ensembles” in statistical mechanics. We recall some facts:

1. Gaussian integrals: ∫
R
e−x2/2 =

√
2π

∫
Rn

e−∥x∥22/2 = (2π)n/2

2. Poincaré’s inequality:

Var(∥x∥2) ≤ E

∣∣∣∣∣∇∥x∥2

∣∣∣∣∣
2

= E

∣∣∣∣∣ x

∥x∥2

∣∣∣∣∣
2

= 1 ≪
√
n

3. If x ∼ N (0, In), ∥x∥22 ∼ χ2(n), so the typical size of ∥x∥2 is
√
n

4. “Equivalence of Ensembles”: Say x ∼ N (0, In). We rewrite it as:

x =
x

∥x∥2
· ∥x∥2

x
∥x∥2 is a unit-norm direction vector on Sn−1, and ∥x∥2 ≈

√
n. So therefore:

x ∼ N (0, In) is approximated as Unif(
√
nSn−1)

and N (0, In) ≈ Unif(
√
nSn−1).

Remark 1. The Gaussian pdf ∝ e−∥x∥22/2 can be interpreted as e−βH(x) with β = 1 and H(x) =
∥x∥22
2

.
Informally, the inverse temperature β plays the role of a “Lagrange multiplier” which enforces H(x) ≈ n/2.
See a textbook for more explanation.

With these facts:

log SA(
√
nSn−1) = log

∫
∥x∥2=

√
n

1 dx ≈ log

∫
∥x∥2≈

√
n

e−∥x∥22/2en/2 dx

1



where we approximated 1 ≈ e−∥x∥2/2en/2 because ∥x∥2 ≈
√
n. Since ∥x∥2 is concentrated about

√
n,

log
∫
∥x∥2≈

√
n
e−∥x∥22/2en/2 dx

log
∫
Rn e−∥x∥22/2en/2 dx

≈ 1

So:

log SA(
√
nSn−1) ≈ log

∫
Rn

e−∥x∥22/2en/2 dx = log(2πe)n/2 =
n

2
log(2πe)

So therefore:

lim
n→∞

1

n
log SA(

√
nSn−1) =

1

2
log(2πe)

1.2 Heuristics of λmax(J) via Replica Calculation

E
[
1

2
λmax(E)

]
= E

[
max
∥x∥2=1

⟨x, Jx⟩
2

]
(∗)
= lim

β→0
E
[
1

βn
log

∫
Unif(

√
nSn−1)

eβ⟨x,Jx⟩/2
]

The equality in (∗) is non-trivial to see, and might show up on the homework. We claim that the integral
in the expectation concentrates. Via Poincaré’s inequality,

Var

(
log

∫
eβ⟨x,Jx⟩/2

)
≤ E

[∣∣∣∣∇J

(
max
∥x∥2=1

⟨x, Jx⟩
2

)∣∣∣∣2
]

By direct calculation,

∇J

(
max

x∈
√
nSn−1

⟨x, Jx⟩
2

)
= ∇J

(
max

x∈
√
nSn−1

⟨xxT , J⟩
2

)
=

xxT

2
∼

√
n

Thus,

Var

(
1

βn
log

∫
eβ⟨x,Jx⟩/2

)
=

1

β2n2
Var

(
log

∫
eβ⟨x,Jx⟩/2

)
≤ 1

β2n2
· n =

1

β2n

So the integral concentrates. Now for the Replica trick:

1. E[logZ] = limk→0
logE[Zk]

k

2. Take a high-dimensional limit:

lim
n→∞

1

n
E[logZ] = lim

n→∞
lim
k→∞

1

nk
logE[Zk] = lim

k→∞
lim
n→∞

1

nk
logE[Zk]

The second equality is a guess (i.e., not fully justified).

3. Now, we guess the formula for limn→∞
1
nk

logE[Zk] for k ≈ 0 from a formula for k ∈ Z. Let µ be the
uniform measure on

√
nSn−1. Then:

E[Zk] = E

[(∫
µ

eβ⟨x,Jx⟩/2 dx

)k
]

= E
[∫

µ⊗k

exp

(
β
⟨x1, Jx1⟩

2
+ · · ·+ β

⟨xk, Jxk⟩
2

)
dx1 · · · dxk

]
=

∫
µ⊗k

E

[
exp

(
β
⟨
∑k

i=1 xix
T
i , J⟩

2

)]
dx1 · · · dxk
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By independence, the expectation factors out, and we can identify each expectation with the MGF
of a Gaussian:

E
[
e

β
2
Jijλ
]
= e

β2

8n
λ2

for any λ

Therefore the integral becomes:

∫
µ⊗k

exp

β2

4n

∥∥∥∥∥
k∑

i=1

xix
T
i

∥∥∥∥∥
2

F

 =

∫
µ⊗k

exp

β2

4n
Tr

( k∑
i=1

xix
T
i

)2
 dx1 · · · dxk

=

∫
µ⊗k

exp

(
β2

4n

k∑
i,j=1

⟨xi, xj⟩2
)

dx1 · · · dxk

Now we can identify
⟨xi,xj⟩

n
with the overlap matrix Qij where Q ∈ Rk×k, and the integral becomes

=

∫
µ⊗k

exp

(
nβ2

4

k∑
i,j=1

Q2
ij

)
dx1 · · · dxk =

∫
Rk×k

exp

(
nβ2

4

k∑
i,j=1

Q2
ij + S(Q)

)
· 1{

Qij=
⟨xi,xj⟩

n

}

where

S(Q) = log

∫
{
µ⊗k :Qij=

⟨xi,xj⟩
n

} dx1 · · · dxk

We now claim that limn→∞
S(Q)
n

= 1
2
log detQ. We will make the following Gaussian approximation

using the “equivalence of ensembles” as before:

Unif

({
(x1, · · · , xk) ∈ Rnk :

⟨xi, xj⟩
n

= Qij

})
≈ N (0,Σ) where Σ =

Q . . .

Q

 ∈ Rnk×nk

and Qij ∈ [−1, 1]. Thus,

log

∫
{
µ⊗k :Qij=

⟨xi,xj⟩
n

} 1 dx1 · · · dxk = log

∫
{
µ⊗k :Qij=

⟨xi,xj⟩
n

} ek/2e−k/2 dx1 · · · dxk

≈ log

∫
Rnk

enk/2e−⟨y,Σ−1y⟩/2dy − k log SA(
√
nSn−1)

= n log

∫
Rk

ek/2e−⟨y,Q−1y⟩/2 dy − k log SA(
√
nSn−1)

The surface area term is a normalizing factor from the definition of µ (i.e. normalizing factor integral

on
√
nSn−1), and nk

2
≈ ⟨y,Σ−1y⟩

2
by concentration1. Continuing on,

= n log
(
(2πe)k/2(detQ)1/2

)
− k log SA(

√
nSn−1)

=
nk

2
log(2πe) +

n

2
log detQ− k log SA(

√
nSn−1)

=
n

2
log detQ

1This is the same idea as before, by Poincaré’s inequality, using that Σ−1/2y is a standard Gaussian in nk dimensions.
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Therefore, ∫
Q

exp

(
nβ2

4

k∑
i,j=1

Q2
ij + S(Q)

)
=

∫
Q

exp

(
nβ2

4

k∑
i,j=1

Q2
ij +

nS(Q)

n

)

= logmax
Q

exp

(
nβ2

4

k∑
i,j=1

Q2
ij +

nS(Q)

n

)

lim
n→∞

1

nk
logE[Zk] =

1

k
max
Q

{
β2

4

k∑
i,j=1

Q2
ij +

1

2
log detQ

}

1.3 Replica Symmetric Ansatz

Note that ⟨xi, xj⟩ = ⟨xj, xi⟩, and the the Gibbs measure concentrates about the top eigenvalue, so a
reasonable guess for the Q that maximizes this expression is the replica symmetric ansatz:

Q =


1 q q . . . q
q 1 q . . . q
q q 1 . . . q
...

...
...

. . .
...

q q q . . . 1

 ∈ Rk×k q ∈ [0, 1]

and the expression becomes:

lim
n→∞

1

nk
logE[Zk] =

1

k
max
Q,q

{
kβ2

4
+

k(k − 1)β2q

4
+

1

2
log detQ

}
We will continue this computation next lecture by finding q.
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