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Lecture 8: Random Matrices II

Remark 1 (Course logistics). Project proposal is due on Nov. 7th.

Remark 2 (Lecture notes). These lecture notes are a continuation of the previous session, so you may
read the earlier notes beforehand.

1 Top Eigenvalue of a GOE Matrix (Continued)

Let J be a GOE matrix. Recall for

λmax(J) = max
x∈Sn−1

⟨x, Jx⟩

that Poincaré inequality implies Var(λmax) = o(1) as n → ∞. Last time we applied the replica trick to
deduce that
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where we define
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and denote µ by the uniform distribution on

√
nSn−1. Assuming that the replica symmetric ansatz
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where

Q =


1 q · · · q
q 1 · · · q
...

...
. . .

...
q q · · · 1


is a k × k matrix. Our ultimate goal is to derive an asymptotic fromula for (1) as n → ∞. To this end,
we assume all the above limits to be exchangeable and aim to minimize (will be explained) the objective
(2) with respect to q ∈ [0, 1], in the regime that k → 0. Observe that the eigenvalues of Q are 1− q (with
multiplicity k − 1) and 1 + (k − 1)q (with multiplicity 1). That is, we have
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Differentiate f with respect to q:
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As a remark, the reason the maximization problem turns into a minimization problem lies in the fact that
the sign of (k − 1) flips as k → 0. The solutions to f ′(q) = 0 are always either q = 0 or the two roots of a
certain quadratic equation, which converge to q = 1± 1

β
, as k → 0. Hence, the optimal value of q is given

by
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Plugging back into the above formula (3), we have
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(by L’Hôpital’s rule)
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provided that β ≥ 1. Otherwise, q∗ = 0 and the limit is simply β2

4
. However, recall that we are currently

interested in the case β → ∞. We conclude that
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Strictly speaking, this result is just a conjecture (or a guess) as we are missing some justifications, and we
will look into a rigorous proof in the next lecture.

Remark 3 (Meaning of the optimal q∗). Consider pβ(x) ∝ exp (β⟨x, Jx⟩/2). If x, y iid∼ pβ, then ⟨x, y⟩/n =
±q∗ + op(1), as n → ∞.
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