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Lecture 9: Random Matrices I11

9 Rigorous Upper Bound

Recap: A Gaussian orthogonal ensemble (GOE) matrix J € R™ ™ is a random symmetric matrix with
entries distributed as

n

iid. 1 . iid. 2 :
Jij = in, Jij (\c‘l N (0, —> for i < 715 J,L f\sl N (O, —) for ¢ = 1, o, n.
n

In the previous two lectures, we analyzed the largest eigenvalue Ap.x(J) and derived

lim E Ayax(J)] = 2

n—o0

using the replica method.
In this lecture, we provide a rigorous proof of the corresponding upper bound:

E Amax(J)] < 2.

9.1 Motivation
For a GOE matrix J, consider the collection]
9=((z,Jx))sesn-1, S"={z €R": x|z =1},
which defines a mean-zero Gaussian process. The largest eigenvalue of J can then be written as

)\max J) = 7J = i)
(J) = max (z, Jo) = maxg

where X = S"!. Our goal is to derive a uniform upper bound for this Gaussian process:

E 2| <7.
{r;lea)gcg } -

Since the exact value of E [max,ecx ¢,] in the GOE case is difficult to compute, our strategy is to construct
a stochastically dominating Gaussian process h on the same index set X such that

E [max gm] <E [max hxl ,
TEX reX

and E [max,cx h;| is tractable to compute.

We begin with a general comparison inequality for Gaussian processes, which intuitively states that a

process exhibiting greater variability has a larger expected maximum. We will then apply this result to

identify a suitable dominating process for the GOE case and complete the rigorous upper bound.

'In class, we used an assymetric version of the process which slightly breaks some calculations. These notes have the fixed
and simplified version.



Theorem 1 (Sudakov-Fernique Inequality). Let (g:)zex and (hy)zcx be two mean-zero Gaussian
processes on the same index set X. Suppose that for all x,y € X,

Var (¢, — g,) < Var (h, — hy) .

Then
E |log ) exp(g,)| <E |log) exp(hz)] , (1)
zeX rzeX
<
e [y < lmagh] 2

Example 1. Consider two Gaussian random vectors
g~N(0,117), h~N(0,1,),

which can also be viewed as two Gaussian processes indexed by the finite set X' = [n].
For any i # j € [n],
Var(gi — gj) = 0, Var(hi — h]> = 2.

By the Sudakov—Fernique inequality,

E [max gz} <E [max hz} )

i€[n] i€[n]

In fact, for the random vector g, all coordinates are identical:

i€[n]

G=g=-=¢g, g~N(O1), E {maxgz} = E[g:] = 0.
In contrast, for h, the components {h;};_, are i.i.d N (0,1) random variables, and there exsits a small

absolute constant ¢ > 0 such that
Em?x h; > cy/logn.
i€n
Intuitively, the randomness in g arises from a single standard Gaussian variable shared across all coordi-
nates, whereas the randomness in h comes from n independent standard Gaussian variables, which aligns
with the intuition behind the Sudakov-Fernique inequality.

9.2 Gaussian interpolation

The proof of the Sudakov-Fernique inequality relies on the Gaussian interpolation trick. Let (g,),., and
(he),cr be independent mean-zero Gaussian processes on the same index set X'. For any x € X, define
the interpolating process as

Go(t) = Vigs + V1 —thy, te]0,1].
Then G,(0) = hy, G4(1) = g, and

Var (G,(t)) =t Var (g,) + (1 — t) Var (h,) .

The motivation for the Gaussian interpolation trick is that, instead of proving the conclusions of Theorem
directly, one can show that the corresponding quantities of interest (such as the expected maximum)
associated with the interpolated process G, (t) are decreasing in t. This monotonicity immediately implies
the desired inequalities. The elegance of this method is that this can be investigated locally by considering
the derivative with respect to t.

Before proceeding to the proof of Theorem [I| via the Gaussian interpolation trick, we introduce a useful
lemma called Gaussian integration by parts.



Lemma 1 (Gaussian Integration By Parts). Let X ~ N(0,X), where 3 is an n X n covariance matriz.
Then for any differentiable function f :R"™ — R,

ZE”]E [8% ]

assuming the expectations above exist and are finite.

Proof. We first establish the result in one dimension. Let & ~ N(0,1), for any differentiable function
¢ : R — R with compact support,

E[¢'(€) % dz

AL
1

= ——p(x)e
Nors ()
~ Elép (&)
by integration by parts. By an approximation argument, the result extends to all ¢ such that £p(§) and

¢'(€) are integrable.
Write X = XY2Z, where Z ~ N (0,1,,). Then X; =Y}, 1/2ij and hence

ZZW Znf (2Y22)] 221/2 [Zf (5Y22) | Z4]],

where Z_ = {Z;}, ;.
Since {Z;},_, are independent, we have Zj | Z_, ~ N(0,1). Applying the one-dimensional result together
with the chain rule gives

E[Zcf (SY°2) | Z4) ZEI/Q [ 21/22)|Z_}

Therefore,
Z =i Z S°E { 21/22)}
- (Z > 1/2) 2L (o)
j=1 \k=1 i
— YR 2L
Z UE |:(9£L‘] (X):| )
7=1
which completes the proof. O

9.3 Proof of the Sudakov-Fernique inequality
Proof of Theorem[1]. If for any t € (0,1) and 3 > 0,

—E |log Z exp(BG.(t))

zeX




then integrating over ¢ yields

i i 1
B |log 3 exp(36(1)| = [log Y- exp(3Gu0))| + [ G |log 3 exp(56.(0) | at
reX L reX reX
<E |log ) _ exp(8G.(0))
L reX h

Taking 3 = 1 gives the first inequality in [I, Moreover, since

lim —logZexp BGL(t)) = rgleag(Gx(t),

—)oo
g TEX

letting 8 — oo yields the second inequality in [2}
Therefore, it suffices to prove that for any ¢t € (0,1) and 8 > 0, inequality [3| holds. We have

G0 =3 (& - =),

and hence
d - Dpex i XP(BGL(1))
0108 2 P G0) = S e )
B Saew p8Gul0) - (90— /T
2 > v €XP(BGL(1))

Since g and h are independent, conditioning on h leaves g as the same Gaussian process. Conditioned on
any realization of h, define the softmax weights

exp(£Ga(t))

I ST

By Lemmal [T}, for each fixed x

[ OYn o
th gm| h Z COV gr7gy ¢h7 (g)‘ h}

yeX agy

h

= 3" Covlgeng [1{y =2} - BVEexP(BG, (1) e xP(BGar (1))
 BVEexp(BGL(1) exp(5Gy (1)
(Zx’EX eXp(ﬁGx/ (t)))2
5| h
yeX (Zm/e/’\f eXp(ﬁGx/ (t))) ]
_ Z Cov(gs gy)E exp(BG,(t) + /BGy(tD

(959, 2
e _ (Sex exp(8Ga(1)
_ sV (cw(gx, 1) Y | ERECD) + 5G, (1)
YeEX (X wrex exp(BG(1)))

)

Define

exp(BGL(t) + BGy(1))

H(z,y)=E
=R exp(9Ga (1)




Then by the law of total expectation,

E

O3 o) 9—1 = S (Covlgnn ) — Covigengy) - H(x.v)

reX \/E rzeX yekX

2
= % > (Cov(ga, g2) — Cov(gs, gy)) - H(x,y)
TFy
ﬁQ
=7 > (Cov(ga, ga) — 2Cov(gz, gy) + Cov(gy, g,)) - H(z,y)
TFy
52
=T > Var(g, — g,) - H(x,y).
TFy
By a symmetric argument for the A-term, we obtain
d 2
;#zmgkmw@m>=%g;wmfﬂmwm@—@»H@w

<0,

where the last inequality follows from the assumption. This verifies inequality and thus completes the
proof of Theorem [I] O

9.4 Application: sharp upper bound for GOE

In our GOE case, we compute the variance of the Gaussian process g. For any z € X and y € X,

Var(g, — g,) = Var((z, Jz) — (y, Jy))
= Var({J,zz" — yy"))

2
|za™ — yyT||% + tr <($93T —yy") )

n
4(1—(z,9)%)
p )
To apply the Sudakov—Fernique inequality, we construct another mean-zero Gaussian process with larger
pairwise variance. For any = = (u,v) € X, define

L2z
T \/ﬁ )
where Z ~ N (0,1,,). Then for z € X and y € X,
2<Z737 — y>
Var(h, — h,) = Var(————)
vn
o=yl
n
_ 8 (1 — (x,y))
—

Since x,y € S, we have t := (z,y) < 1. Hence
42 =2t —1+t2)
n
4(1 —¢)?
n
0.

Var(h, — hy) — Var(g, — g,) =

v



By the Sudakov-Fernique inequality,

2||Z
E [maxgx} <E lmaxhx} =E [ H “2} <2,
TEX TEX NLD

where the last inequality follows from
Bzl =& |/i218] < \/E12I8 = V&
by Jensen’s inequality. Consequently,

B DA (7)] = B || <2

reX

which is the desired upper bound.
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