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Lecture 9: Random Matrices III

9 Rigorous Upper Bound

Recap: A Gaussian orthogonal ensemble (GOE) matrix J ∈ Rn×n is a random symmetric matrix with
entries distributed as

Jij = Jji, Jij
i.i.d.∼ N

(
0,

1

n

)
for i < j, Jii

i.i.d.∼ N
(
0,

2

n

)
for i = 1, . . . , n.

In the previous two lectures, we analyzed the largest eigenvalue λmax(J) and derived

lim
n→∞

E [λmax(J)] = 2

using the replica method.
In this lecture, we provide a rigorous proof of the corresponding upper bound:

E [λmax(J)] ≤ 2.

9.1 Motivation

For a GOE matrix J , consider the collection1

g = (⟨x, Jx⟩)x∈Sn−1 , Sn−1 = {x ∈ Rn : ∥x∥2 = 1} ,

which defines a mean-zero Gaussian process. The largest eigenvalue of J can then be written as

λmax(J) = max
x∈Sn−1

⟨x, Jx⟩ =: max
x∈X

gx,

where X = Sn−1. Our goal is to derive a uniform upper bound for this Gaussian process:

E
[
max
x∈X

gx

]
≤?.

Since the exact value of E [maxx∈X gx] in the GOE case is difficult to compute, our strategy is to construct
a stochastically dominating Gaussian process h on the same index set X such that

E
[
max
x∈X

gx

]
≤ E

[
max
x∈X

hx

]
,

and E [maxx∈X hx] is tractable to compute.
We begin with a general comparison inequality for Gaussian processes, which intuitively states that a
process exhibiting greater variability has a larger expected maximum. We will then apply this result to
identify a suitable dominating process for the GOE case and complete the rigorous upper bound.

1In class, we used an assymetric version of the process which slightly breaks some calculations. These notes have the fixed
and simplified version.
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Theorem 1 (Sudakov-Fernique Inequality). Let (gx)x∈X and (hx)x∈X be two mean-zero Gaussian
processes on the same index set X . Suppose that for all x, y ∈ X ,

Var (gx − gy) ≤ Var (hx − hy) .

Then

E

[
log
∑
x∈X

exp(gx)

]
≤ E

[
log
∑
x∈X

exp(hx)

]
, (1)

E
[
max
x∈X

gx

]
≤ E

[
max
x∈X

hx

]
. (2)

Example 1. Consider two Gaussian random vectors

g ∼ N
(
0,11T

)
, h ∼ N (0, In) ,

which can also be viewed as two Gaussian processes indexed by the finite set X = [n].
For any i ̸= j ∈ [n],

Var(gi − gj) = 0, Var(hi − hj) = 2.

By the Sudakov–Fernique inequality,

E
[
max
i∈[n]

gi

]
≤ E

[
max
i∈[n]

hi

]
.

In fact, for the random vector g, all coordinates are identical:

g1 = g2 = · · · = gn, g1 ∼ N (0, 1) , E
[
max
i∈[n]

gi

]
= E[g1] = 0.

In contrast, for h, the components {hi}ni=1 are i.i.d N (0, 1) random variables, and there exsits a small
absolute constant c > 0 such that

Emax
i∈[n]

hi ≥ c
√
log n.

Intuitively, the randomness in g arises from a single standard Gaussian variable shared across all coordi-
nates, whereas the randomness in h comes from n independent standard Gaussian variables, which aligns
with the intuition behind the Sudakov–Fernique inequality.

9.2 Gaussian interpolation

The proof of the Sudakov-Fernique inequality relies on the Gaussian interpolation trick. Let (gx)x∈X and
(hx)x∈X be independent mean-zero Gaussian processes on the same index set X . For any x ∈ X , define
the interpolating process as

Gx(t) =
√
tgx +

√
1− thx, t ∈ [0, 1].

Then Gx(0) = hx, Gx(1) = gx, and

Var (Gx(t)) = tVar (gx) + (1− t)Var (hx) .

The motivation for the Gaussian interpolation trick is that, instead of proving the conclusions of Theorem 1
directly, one can show that the corresponding quantities of interest (such as the expected maximum)
associated with the interpolated process Gx(t) are decreasing in t. This monotonicity immediately implies
the desired inequalities. The elegance of this method is that this can be investigated locally by considering
the derivative with respect to t.
Before proceeding to the proof of Theorem 1 via the Gaussian interpolation trick, we introduce a useful
lemma called Gaussian integration by parts.
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Lemma 1 (Gaussian Integration By Parts). Let X ∼ N (0,Σ), where Σ is an n×n covariance matrix.
Then for any differentiable function f : Rn → R,

E [Xif(X)] =
n∑

j=1

ΣijE
[
∂f

∂xj
(X)

]
,

assuming the expectations above exist and are finite.

Proof. We first establish the result in one dimension. Let ξ ∼ N (0, 1), for any differentiable function
φ : R → R with compact support,

E [φ′(ξ)] =
1√
2π

∫ ∞

−∞
φ′(x)e−

x2

2 dx

=
1√
2π

φ(x)e−
x2

2

∣∣∣+∞

−∞
+

1√
2π

∫ ∞

−∞
xφ(x)e−

x2

2 dx

= E[ξφ(ξ)]

by integration by parts. By an approximation argument, the result extends to all φ such that ξφ(ξ) and
φ′(ξ) are integrable.

Write X = Σ1/2Z, where Z ∼ N (0, In). Then Xi =
∑n

k=1Σ
1/2
ik Zk, and hence

E [Xif(X)] =
n∑

k=1

Σ
1/2
ik E

[
Zkf

(
Σ1/2Z

)]
=

n∑
k=1

Σ
1/2
ik E

[
E
[
Zkf

(
Σ1/2Z

)
| Z−k

]]
,

where Z−k = {Zj}j ̸=k.

Since {Zk}nk=1 are independent, we have Zk | Z−k ∼ N (0, 1). Applying the one-dimensional result together
with the chain rule gives

E
[
Zkf

(
Σ1/2Z

)
| Z−k

]
=

n∑
j=1

Σ
1/2
jk E

[
∂f

∂xj

(
Σ1/2Z

)
| Z−k

]
.

Therefore,

E [Xif(X)] =
n∑

k=1

Σ
1/2
ik

n∑
j=1

Σ
1/2
jk E

[
∂f

∂xj

(
Σ1/2Z

)]

=
n∑

j=1

(
n∑

k=1

Σ
1/2
ik Σ

1/2
kj

)
E
[
∂f

∂xj

(
Σ1/2Z

)]

=
n∑

j=1

ΣijE
[
∂f

∂xj
(X)

]
,

which completes the proof.

9.3 Proof of the Sudakov-Fernique inequality

Proof of Theorem 1. If for any t ∈ (0, 1) and β > 0,

d

dt
E

[
log
∑
x∈X

exp(βGx(t))

]
≤ 0, (3)
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then integrating over t yields

E

[
log
∑
x∈X

exp(βGx(1))

]
= E

[
log
∑
x∈X

exp(βGx(0))

]
+

∫ 1

0

d

dt
E

[
log
∑
x∈X

exp(βGx(t))

]
dt

≤ E

[
log
∑
x∈X

exp(βGx(0))

]
.

Taking β = 1 gives the first inequality in 1. Moreover, since

lim
β→∞

1

β
log
∑
x∈X

exp(βGx(t)) = max
x∈X

Gx(t),

letting β → ∞ yields the second inequality in 2.
Therefore, it suffices to prove that for any t ∈ (0, 1) and β > 0, inequality 3 holds. We have

d

dt
Gx(t) =

1

2

(
gx√
t
− hx√

1− t

)
,

and hence
d

dt
log
∑
x∈X

exp(βGx(t)) =

∑
x∈X

d
dt
exp(βGx(t))∑

x∈X exp(βGx(t))

=
β

2
·
∑

x∈X exp(βGx(t)) ·
(
gx/

√
t− hx/

√
1− t

)∑
x∈X exp(βGx(t))

Since g and h are independent, conditioning on h leaves g as the same Gaussian process. Conditioned on
any realization of h, define the softmax weights

ψh,x(g) =
exp(βGx(t))∑
x∈X exp(βGx(t))

.

By Lemma 1, for each fixed x

E [ψh,x(g) · gx|h] =
∑
y∈X

Cov(gx, gy)E
[
∂ψh,x

∂gy
(g)

∣∣∣∣h]

=
∑
y∈X

Cov(gx, gy)E

[
1 {y = x} · β

√
t exp(βGy(t))

∑
x′∈X exp(βGx′(t))(∑

x′∈X exp(βGx′(t))
)2

− β
√
t exp(βGx(t)) exp(βGy(t))(∑

x′∈X exp(βGx′(t))
)2

∣∣∣∣∣h
]

= β
√
t

(
Cov(gx, gx)

∑
y∈X

E

[
exp(βGx(t) + βGy(t))(∑

x′∈X exp(βGx′(t))
)2
∣∣∣∣∣h
]

−
∑
y∈X

Cov(gx, gy)E

[
exp(βGx(t) + βGy(t))(∑

x′∈X exp(βGx′(t))
)2
∣∣∣∣∣h
])

Define

H(x, y) = E

[
exp(βGx(t) + βGy(t))(∑

x′∈X exp(βGx′(t))
)2
]
> 0.
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Then by the law of total expectation,

E

[
β

2

∑
x∈X

ψh,x(g) ·
gx√
t

]
=
β2

2

∑
x∈X

∑
y∈X

(Cov(gx, gx)− Cov(gx, gy)) ·H(x, y)

=
β2

2

∑
x ̸=y

(Cov(gx, gx)− Cov(gx, gy)) ·H(x, y)

=
β2

4

∑
x ̸=y

(Cov(gx, gx)− 2Cov(gx, gy) + Cov(gy, gy)) ·H(x, y)

=
β2

4

∑
x ̸=y

Var(gx − gy) ·H(x, y).

By a symmetric argument for the h-term, we obtain

d

dt
E

[
log
∑
x∈X

exp(βGx(t))

]
=
β2

4

∑
x̸=y

(Var(gx − gy)− Var(hx − hy)) ·H(x, y)

≤ 0,

where the last inequality follows from the assumption. This verifies inequality (3) and thus completes the
proof of Theorem 1.

9.4 Application: sharp upper bound for GOE

In our GOE case, we compute the variance of the Gaussian process g. For any x ∈ X and y ∈ X ,

Var(gx − gy) = Var(⟨x, Jx⟩ − ⟨y, Jy⟩)
= Var(⟨J, xxT − yyT⟩)

=
∥xxT − yyT∥2F + tr

((
xxT − yyT

)2)
n

=
4 (1− ⟨x, y⟩2)

n
.

To apply the Sudakov–Fernique inequality, we construct another mean-zero Gaussian process with larger
pairwise variance. For any x = (u, v) ∈ X , define

hx =
2⟨Z, x⟩√

n
,

where Z ∼ N (0, In). Then for x ∈ X and y ∈ X ,

Var(hx − hy) = Var(
2⟨Z, x− y⟩√

n
)

=
4∥x− y∥22

n

=
8 (1− ⟨x, y⟩)

n
.

Since x, y ∈ Sn−1, we have t := ⟨x, y⟩ ≤ 1. Hence

Var(hx − hy)− Var(gx − gy) =
4(2− 2t− 1 + t2)

n

=
4(1− t)2

n
≥ 0.
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By the Sudakov-Fernique inequality,

E
[
max
x∈X

gx

]
≤ E

[
max
x∈X

hx

]
= E

[
2∥Z∥2√

n

]
≤ 2,

where the last inequality follows from

E [∥Z∥2] = E
[√

∥Z∥22
]
≤
√

E [∥Z∥22] =
√
n,

by Jensen’s inequality. Consequently,

E [λmax(J)] = E
[
max
x∈X

gx

]
≤ 2,

which is the desired upper bound.
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