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In recent work, Devroye et al [I] studied minimax rates for learning various
kinds of graphical models in Total Variation (TV) distance. They proved that
for a tree Ising model on n nodes, the minimax rate for reconstructing the

m

tree model in TV from m samples is upper bounded by O < mog(m) and

posed the tightness of this result as an open question. In this note, we resolve
this open question by proving a matching information-theoretic lower bound,

showing that the minimax rate is © <\ / "I;g") up to a universal constant.

1 Proof of the Lower Bound

Recall from Stirling’s formula that log(n!) ~ nlog(n). This motivates the fol-
lowing simple construction for the lower bound:

1. § is a family of permutations on [n] to be specified later.
2. Pick a permutation 7 from family of permutations S.

3. Build an Ising model on the matching graph with covariance «/+/n be-
tween vertices ¢ and n + 7(i) for every i € [n]. (This corresponds to
edge weight essentially a/y/n since the correlation for edge weight § is

tanh(f) =~ ()

This yields a family of distributions { Py }rcs on 2n nodes.
For the set of permutations, we choose a set which satisfies log |S| = Q(nlog(n))
and such that every set of permutations has Hamming distance at least n/4,
where the Hamming distance is |[{z : 7(z) # 7'(z)}|. In the survey of Quistorff
[3], such a result is given as (6) and attributed to Deza.
The proof reduces to the following claims:

1. Every two elements have large total variation distance. More specifically,
to distinguish models from 7y, 7o look at statistic Z?:l XiXr, (s)- Under
P, the expectation is ay/n and variance is ©(n), whereas under Py, the
expectation is less than (3/4)as/n and variance is ©(n). Applying the
Central Limit Theorem, this shows the total variation distance is Q(«).



2. Every two elements have reasonably small KL. Recall by the Gibbs vari-
ational formula [2] that

KL(Pry, Pry) = (5 B[ X7y, X iy (X))~ (5 By [XT T X i, (X)),

Since the entropies are the same, this is just a difference of expectations.
By similar reasoning to above, it is of order ©(a?) (there are n/4 missing
edges, and they each contribute («/+y/n) - (ca/+/n)).

3. Any algorithm given m < Cynlog(n)/a? samples fails to reconstruct with
probability at least 1/2. Since between any two models the KL for m
samples is of order ma? by tensorization and (2), and log |S| ~ nlog(n),
this follows directly from Fano’s inequality (sec e.g. [4]).

Combining these claims shows that /nlog(n)/m is the tight rate for learning
tree Ising models in TV distance.
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