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In recent work, Devroye et al [1] studied minimax rates for learning various
kinds of graphical models in Total Variation (TV) distance. They proved that
for a tree Ising model on n nodes, the minimax rate for reconstructing the

tree model in TV from m samples is upper bounded by O

(√
n log(n)
m

)
and

posed the tightness of this result as an open question. In this note, we resolve
this open question by proving a matching information-theoretic lower bound,

showing that the minimax rate is Θ

(√
n logn
m

)
up to a universal constant.

1 Proof of the Lower Bound

Recall from Stirling’s formula that log(n!) ∼ n log(n). This motivates the fol-
lowing simple construction for the lower bound:

1. S is a family of permutations on [n] to be specified later.

2. Pick a permutation π from family of permutations S.

3. Build an Ising model on the matching graph with covariance α/
√
n be-

tween vertices i and n + π(i) for every i ∈ [n]. (This corresponds to
edge weight essentially α/

√
n since the correlation for edge weight β is

tanh(β) ≈ β)

This yields a family of distributions {Pπ}π∈S on 2n nodes.
For the set of permutations, we choose a set which satisfies log |S| = Ω(n log(n))

and such that every set of permutations has Hamming distance at least n/4,
where the Hamming distance is |{x : π(x) 6= π′(x)}|. In the survey of Quistorff
[3], such a result is given as (6) and attributed to Deza.

The proof reduces to the following claims:

1. Every two elements have large total variation distance. More specifically,
to distinguish models from π1, π2 look at statistic

∑n
i=1XiXπ1(i). Under

Pπ1
the expectation is α

√
n and variance is Θ(n), whereas under Pπ2

the
expectation is less than (3/4)α

√
n and variance is Θ(n). Applying the

Central Limit Theorem, this shows the total variation distance is Ω(α).
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2. Every two elements have reasonably small KL. Recall by the Gibbs vari-
ational formula [2] that

KL(Pπ1 , Pπ2) = (
1

2
Eπ2 [XTJπ2X]+Hπ2(X))−(

1

2
Eπ1 [XTJπ2X]+Hπ2(X)).

Since the entropies are the same, this is just a difference of expectations.
By similar reasoning to above, it is of order Θ(α2) (there are n/4 missing
edges, and they each contribute (α/

√
n) · (cα/

√
n)).

3. Any algorithm given m ≤ C2n log(n)/α2 samples fails to reconstruct with
probability at least 1/2. Since between any two models the KL for m
samples is of order mα2 by tensorization and (2), and log |S| ∼ n log(n),
this follows directly from Fano’s inequality (see e.g. [4]).

Combining these claims shows that
√
n log(n)/m is the tight rate for learning

tree Ising models in TV distance.
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