
Busy-Time Scheduling:
Offline and Online Algorithms
FREDERIC KOEHLER (MIT) AND SAMIR KHULLER (UMD)

WADS 2017

How are cloud services priced?

A: It’s complicated

Summary
Pay for every hour a machine is on!
◦Scheduling idle time = Saving money

◦ I.e. want to minimize busy time = total time m/c’s are on

Each machine has multiple processors
◦ Want to make use of all of them!

Busy-Time Scheduling Problem
We suppose we have access to infinitely many identical machines, each with g processors (cores)

◦ We will cover finite #machines case later

Input: Jobs with Availability Constraints (rj, dj, pj)

Output: Start times sj, machine assignments mj

Release time rj Deadline dj

Processing time pj

Start time sj

Example (g = 2, 2 machines are used)

Busy time Objective

Busy-time = len () + len()

= 5 + 13 = 18

In general: Busy-time = σ𝑗=1
∞ (𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 𝑖𝑠 𝑜𝑛)

Algorithms?
Trivially NP-Hard: Use Knapsack

Interval Job Case: (rj + pj = dj, i.e. start times are fixed)
◦ Studied in context of fiber optic network design (OADM’s)

◦ Still NP-Hard (Winkler and Zhang ’03)

◦ 2-Approximation (Alicherry and Bhatia ‘03, Kumar and Rudra ‘05)

◦ 4-Approximation (Flammini et al ’09)
◦ Authors were unaware of previous work

◦ Worse approximation but has simple analysis!

Algorithm of Flammini et al
Simple greedy algorithm:
◦ Sort jobs longest to shortest
◦ Start with one machine open
◦ For each job:

◦ Place this job onto the first available processor

◦ If no processors available => open a new machine

NOTE: Job 4 can “blame” jobs 2 & 3, 5 blames 1 & 3

For being forced on a new machine

ALSO: Jobs blaming 3 lie in a window

of size 3 p3

1 2

3

45

g = 2

Analysis of Flammini et al
Trivial load bound: (sum of pj)/g ≤ (opt busytime)

Every job on machine k has at least g longer jobs to “blame” for
it not fitting onto machine k – 1.

So busy-time(machine k) ≤ 3 (sum of pj on machine (k – 1))/g

Summing,

(total busy-time) ≤ (machine 1 busy-time) + 3(sum of pj)/g

≤ 4 (opt. busy-time)

General Case (non-Interval jobs)
4-apx by Khandekar et al, ’10. (3-apx by Chang et al ‘14)

If g = ∞, can solve optimally by dynamic programming

If g < ∞:
◦ Choose start times as if g = ∞, as above
◦ With start times fixed (!), use algorithm of Flammini et al

(total busy-time) ≤ (machine 1 busy-time) + 3(sum of pj)/g

≤ 4 (opt. busy-time)

Our Contributions: Online Algorithms
Online Algorithms
◦ g = ∞: 5-competitive online algorithm, 1.618 lower bound
◦ Ren and Tang (SPAA ‘17) independently gave 6.828-

competitive online algorithm

◦g < ∞: Pick m/c’s via bucketing gives 9 log p_{max}/p_{min} alg

◦ Much faster than dynamic programming

Our Contributions: Bounded No. of M/C
If allowed to by availability-constraints, previous algorithms schedule all jobs at once!

◦ This is an issue with “reducing” to g = ∞ problem

◦ Even Amazon does not allow this --- max 20 instances w/out prior approval

◦ We give O(1) busy time algorithms with O(M log (max pj/pk)) many M/C’s, where M = min # M/C’s
needed. Equal pj => can actually use optimal # of M/C’s!

5-Competitive Online Algorithm (g = ∞)
Wait until a job j hits its latest start time dj – pj

Turn the machine on in the interval [dj – pj, dj + pj]

Run every job that fits while the machine is on

5-Competitive Online Algorithm (g = ∞)
Wait until a job j hits its latest start time dj – pj

Turn the machine on in the interval [dj – pj, dj + pj]

Run every job that fits while the machine is on

NOTE: We can
“charge” the busy-time
for the interval to the
“primary job” j which
forced us to run jobs.

Analysis
Fix an arbitrary busy-time optimal schedule OPT.

The time the machine is turned on (under OPT) decomposes into a disjoint union of intervals:

Fix a single interval L. How much time does our schedule use for the jobs in L?
◦ More precisely, how much time do the primary jobs in our schedule from this interval cost us?

A: At most len(L) + 2 * (1 + ½ + ¼ + …) * len(longest job in L) ≤ 5 len(L)

Summing gives 5-approximation.

OPT

OPT

ours

Recall: Bounded No. of M/C
If allowed to by availability-constraints, previous algorithms schedule all jobs at once!

◦ This is an issue with “reducing” to g = ∞ problem

◦ Even Amazon does not allow this --- max 20 instances w/out prior approval

◦ We give O(1) busy time algorithms with O(M log (max pj/pk)) many M/C’s, where M = min # M/C’s
needed. Equal pj => can actually use optimal # of M/C’s!

(3 + ε)-Approx on Bounded No. of M/C
Observation: Batch similar size jobs together

=> good busytime

Algorithm:
◦ Bucket jobs according to processing time pj; round rj and dj

◦ I.e. bucket [1-2], [2-4], [4-8] etc. and round to multiples of 2
◦ In each bucket:

◦ Solve the equal-length scheduling problem to find min # of m/c’s
◦ Every time a multiple of g many jobs are available, run them together

◦ Some jobs remain unscheduled!
◦ Run them with 3-apx of Chang et al
◦ Need to bound # of M/C used in this step. (Nontrivial part!)

Proof Sketch: Busy-time is bounded
In one bucket, jobs length lie in [p/α, p] for some p
◦ CLAIM: Busytime is bounded by 2 α * (load bound)

◦ Sum over buckets, and with bound of Chang et al => (2 α + 1)-approximation

Rounded Time Real Time (unrounded)

Proof Sketch: Number of M/C Bounded
Number of machines used by each bucket?
◦ We solve m/c minimization optimally in each bucket with

rounded rj, pj, dj

◦ If we are careful in unrounding, get O(α)-approximation

Number of machines used by calling Chang et al?
◦ Idea: Jobs dropped from a bucket have essentially disjoint

availability intervals
◦ Show that even taking arbitrary valid assignment of start

times, number of m/c we need is bounded by true optimum

Summary
5-approximation for (g = ∞) busy-time scheduling
◦ Best known; lower bound of φ ≈ 1.618
◦ What is the true competitive ratio?

(3 + ε)-approximation with only O(M max log pj/pk) M/C’s
◦ M = minimum number of machines required to run all jobs

In paper: 6-approximation for busy-time on optimal # of M/C’s
◦ Only when all processing times are equal.
◦ Trade-off lower bounds: similar result cannot hold in general!

Also in paper: online with lookahead by “fusing” algorithms

