Busy-Time Scheduling:
Oftline and Online Algorithms

FREDERIC KOEHLER (MIT) AND SAMIR KHULLER (UMD)
WADS 2017

How are cloud services priced?

A: It's complicated

Amazon EC2 Pricing

Amazon EC2 is free to try. Thers ars four ways to pay for Amazon EC2

nstances: On-Demand, Resaned Instances, and Spot Instances. You
can glse pay for Dedicated Hosts which provide you with EC2 instance

capacity on physicel servers dedicated for your use.

On-Demand

With On-Demend Instances, you pey for compute capacity by the
FaUr WIth N0 FNg-TSIm COMMItMSnts OF UpIToNt BEVIMSLs. You
CEM INCreess or decreese your computs capacty depending on the
QsmEnds of your epplication and only pay the specified noury rats
for the INSIBNCSS You Uss.

On-Cemand Instances are recommended for:

* \Ugers that prefer the |ow cost and Nisoiity of Amazon EC2
without any up-front payment or long-tem commitmeant

& AppIications with short-tenmm, Spiy, oF Unpradiciabls workioeds
that cannat be Intsmupted

= Applications being dewveloped or testad on Amazon EC2 for the
first time

See On-Damend Pricing

Lsunch an Amazon EC2 Instence
Tor Free

Try Amazon EC2 for Fres

AINS Froa Teer includes: 750 howrs of
Linup: and Windows 12.micrs instances:
@ach manth for cne yan Te sty wea

the Free Tier, use anly BC2 Micra
instances.

imwr AW Fres Tiar Detals »

Spot Instances

Amezon BC2 Spot Instencas sliow you to bid on spars Amezon
ECZ computing CEpEcity for up to 903 Off tha On-DSmand prics.
Leam Mars.

Spot INStences Sre rECOMMEndsd for:
* Applicstions that have flexible start and snd times
ADpIICENONS that ars only Teesibis &t VEry 10w CompUts prices

= Users with ungent computing needs for karge emounts of
soditions! capacity

Saa Spot Pricing

T--'"'_‘—"-——-.____

Ressrved Instances

Fassrysd INSIENCSS provids you Witn & significant discount (up to
76%¢) compered to On-Demand Instancs pricing. In sddition, whan
Reserved INStEncas srs SEsignsd 10 @ Specific AVsiabiity Zons,
they provids & capecity reservation, giving you eddttionsl
confidence In your ebility to launch Instances when you nesd
tham.

For epplications thet heve steedy ststa or predicteble usags,
FESsrysa INSIENCES C2n provids SIgRIfcant S8Vings Comosrsd 10
using On-Demand Instances. See How 1o Furchass Ressrved
Instances for mors information.

FESenved INSIENCES &rs recommenasd Tor
* AQOiCENons Witn S1eEdy Stats USage

* Apoiications thet may reguirs reserved capecity

& CLSIOMENS that can comimit to using EC2 over & 1 or 3 year
tarm 1o reducs thair totsl CompuUting costs.

Ses Reservad Pricing

Dedicated Hoats

A Dedicated Host 1S 8 physical ECZ Server gediCE1ed Tor your USs.
Dedicated Hosts can help you reducs costs by allowing you fo uss
}ULII'BKE"I'Q sarver-nound softwers lcanses, ||'ICUGI'IG WINdoWws
Sarver, S0L Sarver, and SUSE Linux Entsrprise Server (subject to
your licenss terms), and can also help you mest compliancs
requiremants. Laam mors.

= (Can be purchased On-Demand hourky).

Can D& purchessd 85 B Resarvation Tor up 1 70% off the On-
Damand prics.

Sea Dedicatad Fricing

_T

Dedicated Hosts Configuration Table

A Dedicated Host is configurad to support one instance type at a time. For example, if you allocate a c3.xlarge Dedicated Host, you can
use a Dedicated Host with two sockets and 20 physical cores configured to support up to 8 c3.xlarge instances. Refer to the table below
for Dedicated Host instance configurations. For more information on instances, visit EC2 Instance Types.

Dedicated Host A utes

Instance Capacity Per Host by Instance Size

Instance Physical
Type Sockpts Cores dium large xlarge 2xlarge dxlarge 8xlarge 10xlarge 16xl 32xlarge
xlarge
c3 - 16 5 4 2 1 - _ _
c4d - 16 8 4 2 1 - ~ _
p2 2 36 - - 16 - - 2 - 1 -
g3 2 36 - = = = 4 o -] i
m3 2 20 32 16 8 4 - - - _)
dz2 p 24 - - o] 4 2 1 - _ ;

Pricing
On-Demand Pricing

When you pay On-Demand for Dedicated Hosts, you pay for each hour that the Dedicated Host is active in your account (or allocated).
You can terminate billing for any particular On-Demand Dedicated Host by releasing it. On-Demand gives you the flexibility to scale up or

down without long-term commitments. To learn more about how to allocate or release a Dedicated Host, visit Dedicated Hosts Getting

Started.

L1

Region: | US East (Ohio)

Price Per Hour

General Purpose - Current Generation

m4d

Compute Optimized - Current Generation

cd $1.75

GPU Instances - Current Generation
p2 $15.84

g3 $5.016

Memory Optimized - Current Generation

%1 $14.672

Summary

Pay for every hour a machine is on!
°Scheduling idle time = Saving money

°|.e. want to minimize busy time = total time m/c’s are on

Each machine has multiple processors
>Want to make use of all of them!

Busy-Time Scheduling Problem

We suppose we have access to infinitely many identical machines, each with g processors (cores)
> We will cover finite #machines case later

Processing time p;

&
<

»
|

— J

A

Release time r Deadline dj

Input: Jobs with Availability Constraints (rj, dj, pj) Start time s,

Output: Start times s, machine assignments m;

Example (g = 2, 2 machines are used)
|

!]

L

|

8 .

Busy time Objective

Busy-time = len () + |en ()
=5+13=18

In general: Busy-time = Y72 ; (total time machine j is on)

Algorithms?
Trivially NP-Hard: Use Knapsack

Interval Job Case: (r;+ p; = d, i.e. start times are fixed)

o Studied in context of fiber optic network design (OADM'’s)

o Still NP-Hard (Winkler and Zhang '03)

> 2-Approximation (Alicherry and Bhatia ‘03, Kumar and Rudra ‘05)
o 4-Approximation (Flammini et al "09)

> Authors were unaware of previous work
> Worse approximation but has simple analysis!

Algorithm of Flammini et al

Simple greedy algorithm:
> Sort jobs longest to shortest
o Start with one machine open

> For each job:
> Place this job onto the first available processor

° |f no processors available => open a new machine
NOTE: Job 4 can “blame” jobs 2 & 3, 5 blames 1 & 3
For being forced on a new machine

ALSO: Jobs blaming 3 lie in a window
of size 3 p, ,

g=2

Analysis of Flammini et al
Trivial load bound: (sum of p;)/g < (opt busytime)

Every job on machine k has at least g longer jobs to “blame” for
it not fitting onto machine k — 1.

So busy-time(machine k) < 3 (sum of p, on machine (k- 1))/g
Summing,
(total busy-time) < (machine 1 busy-time) + 3(sum of p;)/g

< 4 (opt. busy-time)

General Case (non-Interval jobs)

4-apx by Khandekar et al, "10. (3-apx by Chang et al ‘14)
If g = oo, can solve optimally by dynamic programming

If g < oo:
> Choose start times as if g = oo, as above
> With start times fixed (!), use algorithm of Flammini et al

(total busy-time) < (machine 1 busy-time) + 3(sum of p))/g
< 4 (opt. busy-time)

Our Contributions: Online Algorithms

Online Algorithms
og = oo: 5-competitive online algorithm, 1.618 lower bound

°Ren and Tang (SPAA “17) independently gave 6.828-
competitive online algorithm

°g < oo: Pick m/c’s via bucketing gives 9 log p_{max}/p_{min} alg
> Much faster than dynamic programming

Our Contributions: Bounded No. of M/C

If allowed to by availability-constraints, previous algorithms schedule all jobs at once!
> This is an issue with “reducing” to g = o= problem

> Even Amazon does not allow this --- max 20 instances w/out prior approval

> We give O(1) busy time algorithms with O(M log (max p;/p,)) many M/C’s, where M = min # M/C’s
needed. Equal p; => can actually use optimal # of M/C’s!

—
_ —

5-Competitive Online Algorithm (g = oo}

Wait until a job j hits its latest start time d; — p,

Turn the machine on in the interval [d; — p;, d, + p]]

Run every job that fits while the machine is on

5-Competitive Online Algorithm (g = oo}

Wait until a job j hits its latest start time d; — p,

Turn the machine on in the interval [d; — p;, d, + p]]

Run every job that fits while the machine is on

NOTE: We can
“charge” the busy-time
for the interval to the
“primary job” j which
forced us to run jobs.

]

‘ -

Analysis

Fix an arbitrary busy-time optimal schedule OPT.

The time the machine is turned on (under OPT) decomposes into a disjoint union of intervals:

orr bl L || e ||

. . . 1] x
Fix a single interval L. How muclh time does our schedule use for the jobs in L?
° More precisely, how much time do the primary jobs in our schedule from this interval cost us?

ours < lEl ||] —h— I >

A: At mostlen(L)+2 *(1+% + % +..) * len(longest job in L) <5 len(L)
Summing gives 5-approximation.

Recall: Bounded No. of M/C

If allowed to by availability-constraints, previous algorithms schedule all jobs at once!
> This is an issue with “reducing” to g = o= problem

> Even Amazon does not allow this --- max 20 instances w/out prior approval

> We give O(1) busy time algorithms with O(M log (max p;/p,)) many M/C’s, where M = min # M/C’s
needed. Equal p; => can actually use optimal # of M/C’s!

—
_ —

(3 + €)-Approx on Bounded No. of M/C

Observation: Batch similar size jobs together
=> good busytime

Algorithm:
° Bucket jobs according to processing time p; round r; and d,
o |.e. bucket [1-2], [2-4], [4-8] etc. and round to multiples of 2
° |n each bucket:
> Solve the equal-length scheduling problem to find min # of m/c’s
> Every time a multiple of g many jobs are available, run them together
°c Some jobs remain unscheduled!
> Run them with 3-apx of Chang et al
> Need to bound # of M/C used in this step. (Nontrivial part!)

Proof Sketch: Busy-time is bounded

In one bucket, jobs length lie in [p/a, p] for some p
o CLAIM: Busytime is bounded by 2 a * (load bound)
> Sum over buckets, and with bound of Chang et al => (2 a + 1)-approximation

Rounded Time Real Time (unrounded)

Proof Sketch: Number of M/C Bounded

Number of machines used by each buc

>We solve m/c minimization optimally in

roundedr, p, d;

cet?
each bucket with

> If we are careful in unrounding, get O(a)-approximation

Number of machines used by calling Chang et al?
°|dea: Jobs dropped from a bucket have essentially disjoint

availability intervals

°Show that even taking arbitrary valid assignment of start
times, number of m/c we need is bounded by true optimum

Summary

5-approximation for (g = =) busy-time scheduling
> Best known; lower bound of ¢ = 1.618
> What is the true competitive ratio?

(3 + €)-approximation with only O(M max log p;/p,) M/C’s
> M = minimum number of machines required to run all jobs

In paper: 6-approximation for busy-time on optimal # of M/C'’s
> Only when all processing times are equal.

° Trade-off lower bounds: similar result cannot hold in general!
Also in paper: online with lookahead by “fusing” algorithms

